scispace - formally typeset
Search or ask a question
Topic

Single crystal

About: Single crystal is a research topic. Over the lifetime, 59617 publications have been published within this topic receiving 870828 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, complex admittance measurements were performed on high-purity ceramics prepared by means of the alkoxide synthesis and on less pure ones obtained from the citrate synthesis.
Abstract: Complex admittance measurements are performed on high-purity ceramics prepared by means of the alkoxide synthesis and on less pure ceramics obtained from the citrate synthesis. The results on ceramic materials with grain sizes ranging from 0.4 to 20 µm are compared with those from a single crystal. The activation enthalpy for grain boundary conductivity Hgb = (118 ± 2) kJ/mol for the samples studied, is independent of composition, grain size, and preparation method. Grain boundary conductivity values and consequently the relevant pre-exponential factors are an order of magnitude smaller for the alkoxide materials than for the citrate materials. The ratio of grain bulk and grain boundary conductivity (Qb/Qgb) for alkoxide materials with grain-sizes 0.4 to 0.8 µm varies from 8.5 to 1.0 in the temperature range 500 to 700 °C.

276 citations

Journal ArticleDOI
TL;DR: In this paper, the anisotropy of anionic conductivity in a mixed conductor oxide (La2NiO4+δ) with the 2D K2NiF4-type structure was measured on a high-quality single crystal.

276 citations

Journal ArticleDOI
TL;DR: In this article, the morphology of pentacene triclinic bulk phases on SiO 2 substrates was identified using atomic force microscopy and X-ray diffraction techniques.

275 citations

Journal ArticleDOI
TL;DR: A self-assembly approach is demonstrated that allows the synthesis of single-layer, single crystal and highly nitrogen-doped graphene domain arrays by self-organization of pyridine molecules on Cu surface at temperature as low as 300 °C.
Abstract: The ability to dope graphene is highly important for modulating electrical properties of graphene. However, the current route for the synthesis of N-doped graphene by chemical vapor deposition (CVD) method mainly involves high growth temperature using ammonia gas or solid reagent melamine as nitrogen sources, leading to graphene with low doping level, polycrystalline nature, high defect density and low carrier mobility. Here, we demonstrate a self-assembly approach that allows the synthesis of single-layer, single crystal and highly nitrogen-doped graphene domain arrays by self-organization of pyridine molecules on Cu surface at temperature as low as 300 °C. These N-doped graphene domains have a dominated geometric structure of tetragonal-shape, reflecting the single crystal nature confirmed by electron-diffraction measurements. The electrical measurements of these graphene domains showed their high carrier mobility, high doping level, and reliable N-doped behavior in both air and vacuum.

274 citations

Journal ArticleDOI
TL;DR: A new precision casting technique based on directional solidification, which imparts significantly improved ductility and thermal shock resistance to high temperature creep resistant, nickel-base superalloys, has been carried through from research to production.

274 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
93% related
Band gap
86.8K papers, 2.2M citations
92% related
Amorphous solid
117K papers, 2.2M citations
92% related
Oxide
213.4K papers, 3.6M citations
92% related
Thin film
275.5K papers, 4.5M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023485
20221,042
20211,353
20201,795
20191,797
20181,782