scispace - formally typeset
Search or ask a question
Topic

Single-linkage clustering

About: Single-linkage clustering is a research topic. Over the lifetime, 6344 publications have been published within this topic receiving 261655 citations.


Papers
More filters
Proceedings Article
01 Jan 1996
TL;DR: DBSCAN, a new clustering algorithm relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape, is presented which requires only one input parameter and supports the user in determining an appropriate value for it.
Abstract: Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLARANS, and that (2) DBSCAN outperforms CLARANS by a factor of more than 100 in terms of efficiency.

14,297 citations

Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Book
01 Jan 1988

8,586 citations

Journal ArticleDOI
TL;DR: A FORTRAN-IV coding of the fuzzy c -means (FCM) clustering program is transmitted, which generates fuzzy partitions and prototypes for any set of numerical data.

5,287 citations


Network Information
Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
87% related
Feature extraction
111.8K papers, 2.1M citations
87% related
Artificial neural network
207K papers, 4.5M citations
84% related
Feature (computer vision)
128.2K papers, 1.7M citations
84% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202326
2022115
20217
20207
201916
201851