scispace - formally typeset
Search or ask a question
Topic

Sink (geography)

About: Sink (geography) is a research topic. Over the lifetime, 5670 publications have been published within this topic receiving 88440 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: If the surplus population of the source is large and the per capita deficit in the sink is small, only a small fraction of the total population will occur in areas where local reproduction is sufficient to compensate for local mortality, and the realized niche may be larger than the fundamental niche.
Abstract: Animal and plant populations often occupy a variety of local areas and may experience different local birth and death rates in different areas. When this occurs, reproductive surpluses from productive source habitats may maintain populations in sink habitats, where local reproductive success fails to keep pace with local mortality. For animals with active habitat selection, an equilibrium with both source and sink habitats occupied can be both ecologically and evolutionarily stable. If the surplus population of the source is large and the per capita deficit in the sink is small, only a small fraction of the total population will occur in areas where local reproduction is sufficient to compensate for local mortality. In this sense, the realized niche may be larger than the fundamental niche. Consequently, the particular species assemblage occupying any local study site may consist of a mixture of source and sink populations and may be as much or more influenced by the type and proximity of other habitats a...

5,014 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
08 Nov 2001-Nature
TL;DR: An overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems is provided, confirming that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s.
Abstract: Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.

1,291 citations

Journal ArticleDOI
07 Jan 2011-Science
TL;DR: The continental GHG sink may be considerably overestimated, and freshwaters need to be recognized as important in the global carbon cycle.
Abstract: Inland waters (lakes, reservoirs, streams, and rivers) are often substantial methane (CH4) sources in the terrestrial landscape. They are, however, not yet well integrated in global greenhouse gas (GHG) budgets. Data from 474 freshwater ecosystems and the most recent global water area estimates indicate that freshwaters emit at least 103 teragrams of CH4 year−1, corresponding to 0.65 petagrams of C as carbon dioxide (CO2) equivalents year−1, offsetting 25% of the estimated land carbon sink. Thus, the continental GHG sink may be considerably overestimated, and freshwaters need to be recognized as important in the global carbon cycle.

1,208 citations

Journal ArticleDOI
09 Sep 1994-Science
TL;DR: Lakes are a small but potentially important conduit for carbon from terrestrial sources to the atmospheric sink, and the potential efflux of CO2 from lakes is about half as large as riverine transport of organic plus inorganic carbon to the ocean.
Abstract: Data on the partial pressure of carbon dioxide (CO2) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within ±20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure of CO2 averaged 1036 microatmospheres, about three times the value in the overlying atmosphere, indicating that lakes are sources rather than sinks of atmospheric CO2. On a global scale, the potential efflux of CO2 from lakes (about 0.14 x 1015 grams of carbon per year) is about half as large as riverine transport of organic plus inorganic carbon to the ocean. Lakes are a small but potentially important conduit for carbon from terrestrial sources to the atmospheric sink.

1,086 citations


Network Information
Related Topics (5)
Surface runoff
45.1K papers, 1.1M citations
80% related
Groundwater
59.3K papers, 1M citations
79% related
Water resources
47.4K papers, 772.9K citations
78% related
Aquifer
41.4K papers, 778.5K citations
77% related
Drainage basin
31.6K papers, 557.8K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023555
20221,157
2021131
2020200
2019232
2018253