scispace - formally typeset
Search or ask a question
Topic

SISAL

About: SISAL is a research topic. Over the lifetime, 1878 publications have been published within this topic receiving 55528 citations.


Papers
More filters
Posted ContentDOI
TL;DR: In this paper, the sisal cellulose nanowhiskers with ultrathin diameter of 5-10nm, high crystallinity of 74% and C6 carboxylate groups converted from C6 primary hydroxyls were prepared via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization.
Abstract: Cellulose nanowhiskers as one kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, the sisal cellulose nanowhiskers with ultrathin diameter of 5–10 nm, high crystallinity of 74% and C6 carboxylate groups converted from C6 primary hydroxyls were prepared via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The effects of sodium hydroxide concentration in alkali pretreatment on the final sisal cellulose nanowhiskers were explored. It was found that with the increase of sodium hydroxide concentration, the sisal fiber crystalline type would change from cellulose I to cellulose II. The versatile sisal cellulose nanowhiskers would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, filtration, pharmaceutical and optical industries as additives.

10 citations

Journal ArticleDOI
01 Mar 2022-Heliyon
TL;DR: In this paper , the performance of hybrid Natural Fiber-Reinforced Composites (NFRCs) from E-glass, Nacha (Hibiscus macranthus Hochst. Ex-A. Rich.), and Sisal (Agave sisalana) fibers are investigated for wind turbine blades applications.

10 citations

Journal ArticleDOI
TL;DR: In this article, the decomposition behavior of composites made of poly(3-hydroxybutyrate-co-3hydroxyvalerate) (PHBV) and sisal were assessed in terms of thermal stability and decomposition kinetics, under inert...
Abstract: The decomposition behaviours of composites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and sisal were assessed in terms of thermal stability and decomposition kinetics, under inert ...

10 citations

Patent
30 Oct 2013
TL;DR: In this paper, a sisal fiber wet nonwoven fabric is described, which is mainly prepared from reproducible and naturally degradable sisal fibers and wood in the presence of a small amount of chemical fibers by a wet papermaking process.
Abstract: The invention relates to a manufacture method of a sisal fiber wet nonwoven fabric. According to the manufacture method, the sisal fiber wet nonwoven fabric is mainly prepared from reproducible and naturally degradable sisal fibers and wood in the presence of a small amount of chemical fibers by a wet papermaking process. Mainly aiming at the disadvantages that the chemical fiber nonwoven fabric is difficult to degrade, the invention discloses a sisal fiber nonwoven fabric having the characteristics of simple formula, environmental friendliness and easiness in process operation.

10 citations

Journal ArticleDOI
TL;DR: In this paper , the authors evaluate and compare the environmental performance of two composites reinforced with sisal fibers, one produced with a Portland cement matrix and the other with a geopolymer matrix based on a residue, in this case, the sludge from a water treatment plant.
Abstract: In the development of new products, both the use of residues and the use of renewable materials are important strategies for a more circular production. However, it is not enough just to idealize a new product as environmentally sustainable, it is also necessary to prove the hypothesis through scientifically accepted methodologies, such as life cycle assessment (LCA). Thus, the objective of this study was to evaluate and compare, through LCA, the environmental performance of two composites reinforced with sisal fibers, one produced with a Portland cement matrix and the other with a geopolymer matrix based on a residue, in this case, the sludge from a water treatment plant. When comparing the environmental performance of composites using the impact assessment methods ReCiPe 2016 Midpoint/Endpoint and EN 15804, the results were convergent; the composite with the cement matrix has less environmental impact. The composite with the Portland cement matrix and 0.4% superplasticizer, for example, in the category Global warming, using the ReCiPe 2016 Midpoint method, was 42.48% less impactful than the geopolymeric composite without the avoided product. In the category Climate change, using the EN 15804 method, the composite with the Portland cement matrix and 0.4% superplasticizer was 42.05% less impactful than the geopolymeric composite without the avoided product. The sensitivity analysis showed that the critical environmental points in the two composites are the production of potassium hydroxide and transport in the case of the geopolymer composite, and the production of cement and transport for the Portland cement composite. This research contributes scientifically by presenting potential alternatives for the construction industry that have already been evaluated from an environmental perspective. It is important to environmentally assess new products still in the development stage, since stating that a building material has superior environmental performance just because it is produced from residues or from a renewable raw material may not be a true reflection of the facts.

10 citations


Network Information
Related Topics (5)
Nanocomposite
71.3K papers, 1.9M citations
76% related
Cellulose
59K papers, 1.4M citations
75% related
Ultimate tensile strength
129.2K papers, 2.1M citations
74% related
Polymer
131.4K papers, 2.6M citations
71% related
Scanning electron microscope
74.7K papers, 1.3M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023130
2022268
2021157
2020127
2019145
2018141