scispace - formally typeset
Search or ask a question
Topic

SISAL

About: SISAL is a research topic. Over the lifetime, 1878 publications have been published within this topic receiving 55528 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a composite laminate based on natural sisal fiber and polypropylene was prepared by compression molding and the mechanical properties of the composite were assessed under tensile, flexural and impact loading Changes in the stress-strain characteristics, yield stress, tensile strength, and tensile modulus, due to ageing have been analysed.

62 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of sisal fibres on impact resistance of structural concrete was investigated and the performance was compared with that of polypropylene (PP) and steel fibres.

62 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a master curve with the Arrhenius model to determine the creep resistance at longer times and different temperatures, leading to a relationship between the observed creep behavior and the composite morphology.
Abstract: Biodegradable composites based on cellulose derivatives/starch blends reinforced with sisal short fibers were fabricated by injection molding. Results of short-term flexural creep tests are reported to investigate the time-dependence behavior of the composites. Fiber content and temperature effects are also considered, taking into account various methods and equations. At short times, a creep power law is employed. A master curve with the Arrhenius model is used to determine the creep resistance at longer times and different temperatures. Good fitting of the experimental results with the four-parameter model is reported, leading to a relationship between the observed creep behavior and the composite morphology. The addition of sisal fibers to the polymeric matrix promotes a significant improvement of the composite creep resistance. Polym. Compos. 25:280–288, 2004. © 2004 Society of Plastics Engineers.

62 citations

Journal ArticleDOI
TL;DR: The above data demonstrated that MCC derived from sisal fibers could be an industrially feasible alternative for currently used MCCs as diluent and disintegrant for both immediate-release as well as sustained-release oral solid dosage forms.
Abstract: The above data demonstrated that MCC derived from sisal fibers could be an industrially feasible alternative for currently used MCCs as diluent and disintegrant for both immediate-release as well as sustained-release oral solid dosage forms.

62 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of micro-silica microparticles, volume fraction of sisal and maleic anhydride on the mechanical properties of polymeric composites reinforced with unidirectional sisal natural fibres.
Abstract: Polymeric composites reinforced with natural fibres have been developed in recent years, showing significant potential for various engineering applications due to their intrinsic sustainability, low cost, low weight and mechanical strength. The interfacial adhesion between natural fibres and polymeric matrices is critical to the composite performance. In order to improve the physical adhesion of polymeric composites, micro and nanoparticles have been added to synthetic fibres in the past. This work investigates the effect of silica microparticles, volume fraction of sisal and maleic anhydride on the mechanical properties of polymeric composites reinforced with unidirectional sisal natural fibres. A full factorial design (2231) was carried out to identify the effect of these factors on the responses: bulk density, apparent density, apparent porosity, water absorption, mechanical strength and modulus of elasticity. A microstructure analyses was conducted to verify the interface condition. The volume fraction of fibres, silica addition, and the interaction between silica particles and maleic anhydride additions exhibited significant effects on the tensile strength and modulus of elasticity of the composites. The microsilica addition did not affect significantly the flexural strength; while the interaction between fraction of fibres, silica particles and maleic anhydride addition played a major role not only on the flexural strength, but also on the flexural modulus. The volume fraction of sisal fibres exhibited significant effects on the bulk density, apparent density, apparent porosity and water absorption of the composites.

61 citations


Network Information
Related Topics (5)
Nanocomposite
71.3K papers, 1.9M citations
76% related
Cellulose
59K papers, 1.4M citations
75% related
Ultimate tensile strength
129.2K papers, 2.1M citations
74% related
Polymer
131.4K papers, 2.6M citations
71% related
Scanning electron microscope
74.7K papers, 1.3M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023130
2022268
2021157
2020127
2019145
2018141