scispace - formally typeset
Search or ask a question
Topic

Sister chromatid exchange

About: Sister chromatid exchange is a research topic. Over the lifetime, 3187 publications have been published within this topic receiving 90029 citations. The topic is also known as: replication-born DSB repair by SCE & GO:1990414.


Papers
More filters
Journal ArticleDOI
TL;DR: The data on cell growth inhibition suggest that this is the result of increased incorporation of bromodeoxyuridine per cell due to decreased numbers of growing cells, although other mechanisms cannot be ruled out.
Abstract: Substantial increases in chromosome aberrations were induced in Chinese hamster ovary cells by medium made hyperosmotic with NaCl, KCl, sucrose, sorbitol or dimethyl methylphosphonate. The increases were associated with cytotoxicity but occurred in the range (e.g., 70% survival) commonly included in in vitro tests for 'genotoxicity'. The relation between increased osmotic pressure and chromosome aberrations is compound-dependent, e.g., some compounds may have a direct effect in addition to an effect mediated by osmotic pressure/ionic strength. Also, glycerol at high osmolality was not toxic and did not induce aberrations, probably because rapid equilibration across the cell membrane precluded severe osmotic stress to the cells. Weak increases in DNA single-strand breaks (NaCl and KCl) and double-strand breaks (NaCl) were also detectable, at higher concentrations and more toxic levels than those required to produce aberrations. Slight elevations in sister-chromatid exchange frequencies caused by hyperosmotic medium were found in the presence of toxicity and severe cell cycle delay. Our data on cell growth inhibition suggest that this is the result of increased incorporation of bromodeoxyuridine per cell due to decreased numbers of growing cells, although other mechanisms cannot be ruled out. The observations on chromosome aberrations demonstrate the need for keeping in vitro test conditions in the physiological range, and provide a means for investigation of indirect DNA damage.

138 citations

Journal ArticleDOI
15 Nov 1979-Nature
TL;DR: It is reported here that some undetectably mutagenic and/or toxic agents produce increases in SCE frequency and that DNA single-strand breaks, DNA–DNA interstrand cross- links, and DNA–protein cross-links are not necessary for SCE.
Abstract: Reciprocal exchanges of DNA in sister chromatids (SCEs) are induced by various carcinogens and mutagens, although the quantitative relationship between the number of mutations and SCEs induced varies among chemicals. Nevertheless, the analysis of SCE production by various agents is often proposed as a sensitive and quantitative assay for genetic damage of the sort leading to mutation and cancer. In V-79 Chinese hamster cells we have been measuring DNA damage by alkaline elution, mutation induction as detected by 6-thioguanine resistance, and cytotoxicity as detected by colony formation for different physical and chemical agents. Some of the agents produced varying forms of DNA damage but undetectable increases in either mutation or toxicity. We report here that some undetectably mutagenic and/or toxic agents produce increases in SCE frequency and that DNA single-stranded breaks, DNA--DNA interstrand cross-links, and DNA--protein cross-links are not necessary for SCE.

138 citations

Journal ArticleDOI
TL;DR: The findings suggest that the hydroxyl radical has an important role in the production of phagocyte-induced cytogenetic injury, membrane-derived intermediates may be involved, depletion of intracellular glutathione renders cells more susceptible to this injury, and supplementation of target cells with antioxidants can protect them from oxygen radical-generated chromosomal injury.
Abstract: Stimulated human phagocytes produce sister chromatid exchanges in cultured mammalian cells by a mechanism involving oxygen metabolites. Experiments were designed to determine whether antioxidants inhibit this process. Superoxide dismutase, catalase, and hydroxyl radical scavengers (benzoate, mannitol) protected target Chinese hamster ovary cells from phagocyte-induced sister chromatid exchanges, implicating the involvement of hydroxyl radicals in this chromosomal damage. N-acetylcysteine and beta-carotene were also protective. alpha-Tocopherol (greater than 5 microM) protected target cells exposed to phagocytes but not to enzymatically generated oxidants when the vitamin was added just before the source of oxygen radicals, suggesting, as reported by others, that the principal action of tocopherol in this setting was to inhibit the release of oxidants from phagocytes. On the other hand, cultivation of target cells with supplemental tocopherol protected them from the toxic effects of the enzymatic oxidant-producing system, indicating a role for membrane-associated free radicals in the mechanism of sister chromatid exchange induction. Low concentrations of sodium selenite (0.1-1.0 microM) protected the target cells. However, higher concentrations (10 microM) of selenite had no effect on oxidant-induced sister chromatid exchange formation, and 0.1 mM selenite increased the number of exchanges. Sodium selenite concentrations of 0.1 mM also decreased the intracellular glutathione concentration of target cells during an oxidant stress, and reducing target cell glutathione concentrations with buthionine sulfoximine increased their sensitivity to oxygen-related chromosomal damage. Therefore, the potentiation of oxygen radical-induced chromosomal damage observed with high concentrations of selenite may result from a decrease in the thiol antioxidant defense systems within the cell. The findings suggest that the hydroxyl radical has an important role in the production of phagocyte-induced cytogenetic injury, membrane-derived intermediates may be involved, depletion of intracellular glutathione renders cells more susceptible to this injury, and supplementation of target cells with antioxidants can protect them from oxygen radical-generated chromosomal injury.

138 citations

Journal ArticleDOI
TL;DR: The results indicate that SOD and possibly also CAT have a protective effect against arsenic-induced DNA damage and may be a synergist to ionizing radiation.
Abstract: Previous investigations have shown that trivalent arsenic is inducing chromosomal aberrations and sister chromatid exchanges (SCEs). In a search for the genotoxic mechanism we have studied the effects

137 citations

Journal Article
TL;DR: The results indicate that GSH S-transferase mu, a proposed marker of cancer susceptibility, is also a marker of susceptibility to the induction of cytogenetic damage by a certain class of mutagens.
Abstract: The identification of genetic traits that predispose individuals to environmentally induced cancers is one of the most important problems in cancer risk assessment. Genetic deficiency in the mu-isozyme of the glutathione (GSH) S-transferases (EC 2.5.1.18) has recently been associated with increased lung cancer risk. To test whether this association could arise from a metabolically mediated sensitivity to mutagenic substrates, cytogenetic damage in lymphocytes from 21 isozyme-deficient and 24 nondeficient individuals was induced. Cells were treated with trans-stilbene oxide, an excellent substrate for GSH S-transferase mu, or cis-stilbene oxide, a poor substrate for the isozyme. Sister chromatid exchange induction was measured as an indicator of cytogenetic damage. A trimodal distribution of trans-stilbene oxide-induced sister chromatid exchanges was observed in the population, including resistant, moderate, and highly sensitive groups. Glutathione S-transferase mu deficiency was associated with both moderate and high sensitivity to trans-stilbene oxide-induced damage but had no effect on cis-stilbene oxide-induced sister chromatid exchange. The results indicate that GSH S-transferase mu, a proposed marker of cancer susceptibility, is also a marker of susceptibility to the induction of cytogenetic damage by a certain class of mutagens. The differential effects of the cis- and trans-isomers of stilbene oxide illustrate that the stereoselectivity of GSH S-transferase mu toward various alkene epoxide substrates can be an important factor affecting individual sensitivity to DNA-damaging epoxides.

136 citations


Network Information
Related Topics (5)
DNA damage
47K papers, 2.4M citations
84% related
DNA repair
41.5K papers, 2.4M citations
83% related
DNA
107.1K papers, 4.7M citations
77% related
Mutation
45.2K papers, 2.6M citations
76% related
Carcinogenesis
60.3K papers, 3.1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202222
20215
202011
201914
201811