scispace - formally typeset
Search or ask a question
Topic

Sister chromatid exchange

About: Sister chromatid exchange is a research topic. Over the lifetime, 3187 publications have been published within this topic receiving 90029 citations. The topic is also known as: replication-born DSB repair by SCE & GO:1990414.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that type I and type II topoisomerase inhibitors have pronounced but very different effects on SV40 DNA replication.
Abstract: I have found that antineoplastic drugs which are known to be inhibitors of mammalian DNA topoisomerases have pronounced and selective effects on simian virus 40 DNA replication. Ellipticine, 4'-(9-acridinylamino)methanesulfon-m-aniside, and Adriamycin blocked decatenation of newly replicated simian virus 40 daughter chromosomes in vivo. The arrested decatenation intermediates produced by these drugs contained single-strand DNA breaks. Ellipticine in particular produced these catenated dimers rapidly and efficiently. Removal of the drug resulted in rapid reversal of the block and completion of decatenation. The demonstration that these drugs interfere with decatenation suggests that they may exert their cytotoxic and antineoplastic effects by preventing the separation of newly replicated cellular chromosomes. Camptothecin rapidly breaks replication forks in growing Cairns structures. It is likely that the target of camptothecin is the "swivel" topoisomerase required for DNA replication and that it is located at or very near the replication fork in vivo. Evidence is presented that many of the broken Cairns structures are in fact half-completed sister chromatid exchanges. One pathway for the resolution of these structures is completion of the sister chromatid exchange to produce a circular head-to-tail dimer.

128 citations

Journal ArticleDOI
TL;DR: It is proposed that precatenanes, which form as replication progresses by interwinding of newly replicated sister chromosomes, are responsible for E. coli sister chromosome cohesion.
Abstract: A body of evidence supports the idea that newly replicated Escherichia coli chromosomes segregate progressively as replication progresses, with spatial separation of sister genetic loci occurring approximately 15 min after their replication. We show that the time of this cohesion can be modulated by topoisomerase IV (TopoIV) activity. Impairment of TopoIV prevents segregation of newly replicated sister loci and bulk chromosome segregation, whereas modest increases in TopoIV decrease the cohesion time substantially. Therefore, we propose that precatenanes, which form as replication progresses by interwinding of newly replicated sister chromosomes, are responsible for E. coli sister chromosome cohesion.

128 citations

Journal ArticleDOI
TL;DR: It is hypothesized that magnification of the gene coding for ribosomal RNA occurs by unequal mitotic sister chromatid exchange, and it is possible to generate bb(+) and bb somatic bristle mosaics (bb mutants are partially deficient for rRNA genes).
Abstract: It is hypothesized that magnification of the gene coding for ribosomal RNA occurs by unequal mitotic sister chromatid exchange on the basis of five different lines of evidence. These are: (1) rDNA magnification occurs in mitotically active germ cells; (2) decreases in rDNA redundancy can be genetically produced, a phenomenon termed reduction; (3) magnification and reduction events are reversible and reciprocal; (4) it is possible to generate bb+ and bb somatic bristle mosaics (bb mutants are partially deficient for rRNA genes); and (5) magnification of bb in a ring X chromosome is reduced. Implications of these results and the unequal sister exchange (USE) hypothesis are discussed.

128 citations

Journal ArticleDOI
TL;DR: It is shown that in mouse embryonic stem (ES) cells, mutations in either the Bloom syndrome homologue (Blm) or the Recql5 genes result in a significant increase in the frequency of sister chromatid exchange (SCE), whereas deleting both Blm and RecQL5 lead to an even higher frequency of SCE.
Abstract: In eukaryotes, crossovers in mitotic cells can have deleterious consequences and therefore must be suppressed. Mutations in BLM give rise to Bloom syndrome, a disease that is characterized by an elevated rate of crossovers and increased cancer susceptibility. However, simple eukaryotes such as Saccharomyces cerevisiae have multiple pathways for suppressing crossovers, suggesting that mammals also have multiple pathways for controlling crossovers in their mitotic cells. We show here that in mouse embryonic stem (ES) cells, mutations in either the Bloom syndrome homologue (Blm) or the Recql5 genes result in a significant increase in the frequency of sister chromatid exchange (SCE), whereas deleting both Blm and Recql5 lead to an even higher frequency of SCE. These data indicate that Blm and Recql5 have nonredundant roles in suppressing crossovers in mouse ES cells. Furthermore, we show that mouse embryonic fibroblasts derived from Recql5 knockout mice also exhibit a significantly increased frequency of SCE compared with the corresponding wild-type control. Thus, this study identifies a previously unknown Recql5-dependent, Blm-independent pathway for suppressing crossovers during mitosis in mice.

128 citations

Journal ArticleDOI
TL;DR: Based on the marked reduction in Holliday junction (HJ) resolution activity in Rad51c-null mouse embryonic fibroblasts, it is proposed that this late function may be associated with HJ resolution.
Abstract: RAD51C is a member of the RecA/RAD51 protein family, which is known to play an important role in DNA repair by homologous recombination. In mice, it is essential for viability. Therefore, we have generated a hypomorphic allele of Rad51c in addition to a null allele. A subset of mice expressing the hypomorphic allele is infertile. This infertility is caused by sexually dimorphic defects in meiotic recombination, revealing its two distinct functions. Spermatocytes undergo a developmental arrest during the early stages of meiotic prophase I, providing evidence for the role of RAD51C in early stages of RAD51-mediated recombination. In contrast, oocytes can progress normally to metaphase I after superovulation but display precocious separation of sister chromatids, aneuploidy, and broken chromosomes at metaphase II. These defects suggest a possible late role of RAD51C in meiotic recombination. Based on the marked reduction in Holliday junction (HJ) resolution activity in Rad51c-null mouse embryonic fibroblasts, we propose that this late function may be associated with HJ resolution.

127 citations


Network Information
Related Topics (5)
DNA damage
47K papers, 2.4M citations
84% related
DNA repair
41.5K papers, 2.4M citations
83% related
DNA
107.1K papers, 4.7M citations
77% related
Mutation
45.2K papers, 2.6M citations
76% related
Carcinogenesis
60.3K papers, 3.1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202222
20215
202011
201914
201811