scispace - formally typeset
Search or ask a question
Topic

Sister chromatid exchange

About: Sister chromatid exchange is a research topic. Over the lifetime, 3187 publications have been published within this topic receiving 90029 citations. The topic is also known as: replication-born DSB repair by SCE & GO:1990414.


Papers
More filters
Journal ArticleDOI
TL;DR: The experiments show that sub-threshold doses of pesticides may increase SCEs when present in a mixture, and low concentrations of the four pesticides that did not increase S CEs significantly when tested alone, were positive for SCE induction when tested as a mixture.

51 citations

Journal ArticleDOI
TL;DR: It is shown that the shoe factory workers have experienced genotoxic exposure, which is manifest as an increase in the frequency of MN, but not of SCEs, in peripheral lymphocytes.
Abstract: We examined sister chromatid exchanges (SCEs) and micronuclei (MN; cytokinesis-block method) in cultured peripheral lymphocytes from 52 female workers of two shoe factories and from 36 unexposed age- and sex-matched referents. The factory workers showed an elevated level of urinary hippuric acid, a biomarker of toluene exposure, and workplace air contained high concentrations of various organic solvents such as toluene, gasoline, acetone, and (in one of the plants only) ethylacetate and methylenediphenyl diisocyanate. The shoe factory workers showed a statistically significant higher frequency of micronucleated binucleate lymphocytes in comparison with the referents. This finding agreed with three preliminary MN determinations (each comprising 27-32 shoe workers and 16-20 controls) performed in one of the plants 2-5 years earlier. The shoe factory workers also had a lower average level of blood hemoglobin than the referents. In contrast, no difference was found between the groups in SCE analysis. Smokers showed significantly higher mean frequencies of SCEs per cell and high frequency cells (HFC) than nonsmokers. Aging was associated with increased MN rates and reduced cell proliferation. Polymorphism of the glutathione S-transferase M1 gene (GSTM1) did not affect the individual level of SCEs; but in smoking shoe workers an effect of the occupational exposure on the frequency of micronucleated cells could be seen only in GSTM1 null subjects. The low prevalence of the glutathione S-transferase T1 (GSTT1) null genotype precluded the evaluation of the influence of GSTT1 polymorphism. Our results show that the shoe factory workers have experienced genotoxic exposure, which is manifest as an increase in the frequency of MN, but not of SCEs, in peripheral lymphocytes. The exposures responsible for the MN induction could not be identified with certainty, but exposure to benzene in gasoline and methylenediphenyl diisocyanate may explain some of the findings.

51 citations

Journal ArticleDOI
TL;DR: The results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.
Abstract: Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert-/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert-/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cell types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert-/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert+/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert-/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.

51 citations

Journal ArticleDOI
TL;DR: It is shown that paracetamol reduces DNA synthesis by a specific inhibition of ribonucleotide reductase by electron paramagnetic resonance, and added to crude cell extracts of HU-resistant cells also immediately destroys this radical.
Abstract: Effects of paracetamol have been studied in a hydroxyurea (HU)-resistant mouse mammary tumour cell line TA3H2, shown to overproduce the small subunit of ribonucleotide reductase. These TA3H2 cells were much more resistant than the TA3H (wild-type) cells towards the inhibitory effect of paracetamol on cell growth, IC50 0.55 mM paracetamol for the wild-type compared to 2.7 mM for the HU-resistant cells. The reduced cell growth was due to an inhibition of replicative DNA synthesis, judged from an increased percentage of cells in S-phase measured by flow cytometry. Furthermore, in the wild-type cells, the increase in the number of cells in S phase was already observed at 0.1 mM while in the HU-resistant cell line this effect was first seen at 3.0 mM paracetamol. HU inhibits ribonucleotide reductase by destroying a tyrosyl free radical located on the small subunit of the enzyme. By electron paramagnetic resonance we demonstrate that paracetamol added to crude cell extracts of HU-resistant cells also immediately destroys this radical. These results show that paracetamol reduces DNA synthesis by a specific inhibition of ribonucleotide reductase. A concentration-dependent induction of sister chromatid exchanges was found both with paracetamol (1.0-10 mM) and HU (0.3-3 mM) in wild-type cells whereas no such increase was observed in HU-resistant cells. Paracetamol (1 mM for 2 h) also increased the number of chromosomal aberrations CAs in wild-type cells (i.e. chromatid breaks and chromatid exchanges). The frequency of CAs was not increased in HU-resistant cells at paracetamol concentrations up to 10 mM.(ABSTRACT TRUNCATED AT 250 WORDS).

51 citations

Journal ArticleDOI
TL;DR: It is established that 2,4-D is a moderate genotoxicant in mice treated in vivo with high doses, and suggests a minor hazard for humans in the present conditions of its use.

51 citations


Network Information
Related Topics (5)
DNA damage
47K papers, 2.4M citations
84% related
DNA repair
41.5K papers, 2.4M citations
83% related
DNA
107.1K papers, 4.7M citations
77% related
Mutation
45.2K papers, 2.6M citations
76% related
Carcinogenesis
60.3K papers, 3.1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202222
20215
202011
201914
201811