scispace - formally typeset
Search or ask a question
Topic

Slab

About: Slab is a research topic. Over the lifetime, 31617 publications have been published within this topic receiving 318693 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, Halogen-rich andesite melt inclusions in bytownitic plagioclase phenocrysts from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone.
Abstract: [1] Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89–90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This “wedge serpentinite” presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (∼110 km above slab) and the outer forearc serpentinite seamounts (∼25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.

71 citations

Journal ArticleDOI
TL;DR: In this article, a 2D Cartesian finite element model is proposed to explore the fate of compositionally defined lithosphere as it encounters a viscosity increase at the boundary between the upper and lower mantle.
Abstract: We formulate 2-D Cartesian finite element models that explore the fate of compositionally defined lithosphere as it encounters a viscosity increase at the boundary between the upper and lower mantle. Subducted lithosphere is represented as a cold, stiff, layered composite of denser eclogite underlain by more buoyant harzburgite. Slabs impinging on a lower mantle 30 and 100 times more viscous than the upper mantle thicken and fold strongly as they penetrate the lower mantle. Approximately a factor of two thickening occurs via pure shear just above the discontinuity, with additional enhancement due to folding by over a factor of two. No separation of the individual slab components occurs at the discontinuity, and direct comparison with models in which compositional buoyancy is explicitly ignored indicates that slab evolution is largely controlled by the thermal buoyancy. These results are at odds with hypotheses about slab evolution in which the compositional buoyancy contributions lead to component separation and the formation of slab megaliths or a compositionally layered upper mantle.

71 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of water exchange between a floating slab and the transition zone and the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab).
Abstract: [1] Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410–660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5–20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.

71 citations

Journal ArticleDOI
TL;DR: In this article, the radiation characteristics of a magnetically scannable leaky-wave antenna using a corrugated ferrite slab supported by a Teflon waveguide have been demonstrated experimentally.
Abstract: The radiation characteristics of a magnetically scannable leaky-wave antenna using a corrugated ferrite slab supported by a Teflon waveguide have been demonstrated experimentally. A corrugated polycrystalline yttrium iron garnet (YIG) slab having the dimensions 150.0 mm*15.0 mm*10 mm has been fabricated. The corrugation depth, corrugation spacing, and number of corrugations are 150.0 mu m, 2.0 mm, and 55.0, respectively. Experiments have been carried out in the millimeter-wave frequency range from 40.0 to 50.0 GHz. The main beam direction of the leaky wave shifts continuously about 41.0 degrees at the operating frequency 46.8 GHz by altering the DC magnetic field up to 1.4 T. It is found that the corresponding half-power beamwidth varies from 3.2 degrees to 3.6 degrees and a maximum scanning rate is 1.0 degrees /0.02 T. Experimental results are compared with theory based on the dispersion relation of the ferrite slab/dielectric layer structure. >

71 citations

Journal ArticleDOI
TL;DR: In this article, the authors solved the radiative transport equation in a slab using the diffusion approximation in one-dimensional space, and the absorption and scattering coefficients as well as the first moment of the phase function were shown to follow directly from measurement of the diffuse transmission and the collimated transmission, and diffuse reflection.
Abstract: This paper solves the radiative transport equation in a slab using the diffusion approximation in one-dimension. The absorption and scattering coefficients as well as the first moment of the phase function are shown to follow directly from measurement of the diffuse transmission and the collimated transmission, and the diffuse reflection.

71 citations


Network Information
Related Topics (5)
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Nonlinear system
208.1K papers, 4M citations
76% related
Boundary value problem
145.3K papers, 2.7M citations
74% related
Turbulence
112.1K papers, 2.7M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,170
20222,180
2021774
20201,133
20191,317