scispace - formally typeset
Search or ask a question
Topic

Slab

About: Slab is a research topic. Over the lifetime, 31617 publications have been published within this topic receiving 318693 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a global survey of published focal mechanisms for intermediate depth earthquakes suggests that the stress in the slab is controlled, at least in part, by the age of the slab and the rate of convergence.
Abstract: Data from Japanese local seismograph networks suggest that the stresses in double seismic zones are in-plate compression for the upper zone and in-plate tension for the lower zone; the stresses do not necessarily appear to be down-dip. It may therefore be possible to identify other double seismic zones on the basis of data which indicate that events with differing orientations of in-plate stresses occur in a given segment of slab. A global survey of published focal mechanisms for intermediate depth earthquakes suggests that the stress in the slab is controlled, at least in part, by the age of the slab and the rate of convergence. Old and slow slabs are under in-plate tensile stresses and the amount of in-plate compression in the slab increases with increasing convergence rate or decreasing slab age. Young and fast slabs are an exception to this trend; all such slabs are down-dip tensile. Since these slabs all subduct under continents, they may be bent by continental loading. Double seismic zones are not a feature common to all subduction zones and are only observed in slabs which are not dominated by tensile or compressive stresses. Unbending of the lithosphere and upper mantle phase changes are unlikely to be the causes of the major features of double zones, although they may contribute to producing some of their characteristics. Sagging or thermal effects, possibly aided by asthenospheric relative motion, may produce the local deviatoric stresses that cause double zones.

148 citations

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: Variations in P-wave residuals across the Southern Alps rule out underthrusting of one slab of mantle lithosphere beneath another but permit continuous deformation of lithosphere shortened by about 100 kilometers since 6 to 7 million years ago.
Abstract: Seismic anisotropy and P-wave delays in New Zealand imply widespread deformation in the underlying mantle, not slip on a narrow fault zone, which is characteristic of plate boundaries in oceanic regions. Large magnitudes of shear-wave splitting and orientations of fast polarization parallel to the Alpine fault show that pervasive simple shear of the mantle lithosphere has accommodated the cumulative strike-slip plate motion. Variations in P-wave residuals across the Southern Alps rule out underthrusting of one slab of mantle lithosphere beneath another but permit continuous deformation of lithosphere shortened by about 100 kilometers since 6 to 7 million years ago.

148 citations

Journal ArticleDOI
01 Jan 2012-Geology
TL;DR: In this article, the authors develop time-dependent numerical experiments to explore how trenchward motion of thick cratons may result in flat subduction and find that as the craton approaches the trench and the wedge closes, two opposite phenomena control slab geometry: the suction between ocean and continent increases, favoring slab flattening, while the mantle confined within the closing wedge dynamically pushes the slab backward and steepens it.
Abstract: How flat slab geometries are generated has been long debated. It has been suggested that trenchward motion of thick cratons in some areas of South America and Cenozoic North America progressively closed the asthenospheric wedge and induced flat subduction. Here we develop time-dependent numerical experiments to explore how trenchward motion of thick cratons may result in flat subduction. We find that as the craton approaches the trench and the wedge closes, two opposite phenomena control slab geometry: the suction between ocean and continent increases, favoring slab flattening, while the mantle confined within the closing wedge dynamically pushes the slab backward and steepens it. When the slab retreats, as in the Peru and Chile flat slabs, the wedge closure rate and dynamic push are small and suction forces generate, in some cases, flat subduction. We model the past 30 m.y. of subduction in the Chilean flat slab area and demonstrate that trenchward motion of thick lithosphere, 200–300 km, currently ∼700–800 km away from the Peru-Chile Trench, reproduces a slab geometry that fits the stress pattern, seismicity distribution, and temporal and spatial evolution of deformation and volcanism in the region. We also suggest that varying trench kinematics may explain some differing slab geometries along South America. When the trench is stationary or advances, the mantle flow within the closing wedge strongly pushes the slab backward and steepens it, possibly explaining the absence of flat subduction in the Bolivian orocline.

147 citations

Journal ArticleDOI
TL;DR: In this article, the authors grouped the geological and geophysical phenomena associated with water in the slab into three different categories: those related to 1) the storage of water at the surface, 2) the subduction of a hydrated slab and 3) its dehydration that ultimately leads to mantle regassing.

146 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented shear wave splitting measurements from local slab earthquakes at eight seismic stations of the Japanese F-net array located in the Ryukyu arc, and found that the majority of the measured fast directions were parallel to the strike of the trench and perpendicular to the convergence direction.

145 citations


Network Information
Related Topics (5)
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Nonlinear system
208.1K papers, 4M citations
76% related
Boundary value problem
145.3K papers, 2.7M citations
74% related
Turbulence
112.1K papers, 2.7M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,170
20222,180
2021774
20201,133
20191,317