scispace - formally typeset
Search or ask a question
Topic

Slip line field

About: Slip line field is a research topic. Over the lifetime, 1584 publications have been published within this topic receiving 57631 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the number of contacts changes continuously with displacements.
Abstract: Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of ∼6 MPa demonstrate that competing time, displacement, and velocity effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip is also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability.

2,478 citations

Journal ArticleDOI
TL;DR: In this article, the authors defined the ration of the relative lateral movement of two parallel planes of slip to the distance between them, defined in the same way as the shear strain considered in the theory of elasticity.
Abstract: Experiments on the plastic deformation of single crystals, of metals and of rock salt have given results which differ in detail but possess certain common characteristics. In general the deformation of a single crystal in tension or compression consists of shear strain in which sheets of the crystal parallel to a crystal plane slip over one another, the direction of motion being some simple crystal-lographic axis. The measure of this strain, which will be represented by s , is the ration of the relative lateral movement of two parallel planes of slip to the distance between them. Thus it is defined in the same way as the shear strain considered in the theory of elasticity.

1,990 citations

Book
22 Dec 2003
TL;DR: In this paper, the second-rank tensors of a tensor were modeled as tensors and they were used to model the deformation of polycrystalline materials and their properties.
Abstract: Chapter 1. Introduction.1.1 Strain1.2 Stress.1.3 Mechanical Testing.1.4 Mechanical Responses to Deformation.1.5 How Bonding Influences Mechanical Properties.1.6 Further Reading and References.1.7 Problems.Chapter 2. Tensors and Elasticity.2.1 What Is a Tensor?2.2 Transformation of Tensors.2.3 The Second Rank Tensors of Strain and Stress.2.4 Directional Properties.2.5 Elasticity.2.6 Effective Properties of Materials: Oriented Polycrystals and Composites.2.7 Matrix Methods for Elasticity Tensors.2.8 Appendix: The Stereographic Projection.2.9 References.2.10 Problems.Chapter 3. Plasticity.3.1 Continuum Models for Shear Deformation of Isotropic Ductile Materials.3.2 Shear Deformation of Crystalline Materials.3.3 Necking and Instability.3.4 Shear Deformation of Non Crystalline materials.3.5 Dilatant Deformation of Materials.3.6 Appendix: Independent Slip Systems.3.7 References.3.8 Problems.Chapter 4. Dislocations in Crystals.4.1 Dislocation Theory.4.2 Specification of Dislocation Character.4.3 Dislocation Motion.4.4 Dislocation Content in Crystals and Polycrystals.4.5 Dislocations and Dislocation Motion in Specific Crystal Structures.4.6 References.4.7 Problems.Chapter 5. Strengthening Mechanisms.5.1 Constraint Based Strengthening.5.2 Strengthening Mechanisms in Crystalline Materials.5.3 Orientation Strengthening.5.4 References.5.5 Problems.Chapter 6. High Temperature and Rate Dependent Deformation.6.1 Creep.6.2 Extrapolation Approaches for Failure and Creep.6.3 Stress Relaxation.6.4 Creep and Relaxation Mechanisms in Crystalline Materials.6.5 References.6.6 Problems.Chapter 7. Fracture of Materials.7.1 Stress Distributions Near Crack Tips.7.2 Fracture Toughness Testing.7.3 Failure Probability and Weibull Statistics.7.4 Mechanisms for Toughness Enhancement of Brittle Materials.7.5 Appendix A: Derivation of the Stress Concentration at a Through Hole.7.6 Appendix B: Stress Volume Integral Approach for Weibull Statistics.7.7 References.7.8 Problems.Chapter 8. Mapping Strategies for Understanding Mechanical Properties.8.1 Deformation Mechanism Maps.8.2 Fracture Mechanism Maps.8.3 Mechanical Design Maps.8.4 References.8.5 Problems.Chapter 9. Degradation Processes: Fatigue and Wear.9.1 Cystic Fatigue of materials.9.2 Engineering Fatigue Analysis.9.3 Wear, Friction, and Lubrication.9.4 References.9.5 Problems.Chapter 10. Deformation Processing.10.1 Ideal Energy Approach for Modeling of a Forming Process.10.2 Inclusion of Friction and Die Geometry in Deformation Processes: Slab Analysis.10.3 Upper Bound Analysis.10.4 Slip Line Field Analysis.10.5 Formation of Aluminum Beverage Cans: Deep Drawing, Ironing, and Shaping.10.6 Forming and Rheology of Glasses and Polymers.10.7 Tape Casting of Ceramic Slurries.10.8 References.10.9 Problems.Index.

1,630 citations

Journal ArticleDOI
TL;DR: In this paper, a planar double slip model was proposed to analyze the effect of material rate sensitivity on the formation of conjugate slip bands in planar planar crystal geometries.

1,327 citations

Journal ArticleDOI
James R. Rice1
TL;DR: In this article, the authors suggest that the most relevant weakening processes in large crustal events are thermal, and to involve thermal pressurization of pore fluid within and adjacent to the deforming fault core, which reduces the effective normal stress and hence also the shear strength for a given friction coefficient.
Abstract: [1] Field observations of mature crustal faults suggest that slip in individual events occurs primarily within a thin shear zone, <1–5 mm, within a finely granulated, ultracataclastic fault core. Relevant weakening processes in large crustal events are therefore suggested to be thermal, and to involve the following: (1) thermal pressurization of pore fluid within and adjacent to the deforming fault core, which reduces the effective normal stress and hence also the shear strength for a given friction coefficient and (2) flash heating at highly stressed frictional microcontacts during rapid slip, which reduces the friction coefficient. (Macroscopic melting, or possibly gel formation in silica-rich lithologies, may become important too at large enough slip.) Theoretical modeling of mechanisms 1 and 2 is constrained with lab-determined hydrologic and poroelastic properties of fault core materials and lab friction studies at high slip rates. Predictions are that strength drop should often be nearly complete at large slip and that the onset of melting should be precluded over much (and, for small enough slip, all) of the seismogenic zone. A testable prediction is of the shear fracture energies that would be implied if actual earthquake ruptures were controlled by those thermal mechanisms. Seismic data have been compiled on the fracture energy of crustal events, including its variation with slip in an event. It is plausibly described by theoretical predictions based on the above mechanisms, within a considerable range of uncertainty of parameter choices, thus allowing the possibility that such thermal weakening prevails in the Earth.

1,035 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
81% related
Finite element method
178.6K papers, 3M citations
78% related
Ultimate tensile strength
129.2K papers, 2.1M citations
77% related
Microstructure
148.6K papers, 2.2M citations
77% related
Nucleation
63.8K papers, 1.6M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202233
20216
20209
201910
20186