scispace - formally typeset
Search or ask a question
Topic

Slope One

About: Slope One is a research topic. Over the lifetime, 162 publications have been published within this topic receiving 35683 citations.


Papers
More filters
Proceedings ArticleDOI
01 Apr 2001
TL;DR: This paper analyzes item-based collaborative ltering techniques and suggests that item- based algorithms provide dramatically better performance than user-based algorithms, while at the same time providing better quality than the best available userbased algorithms.
Abstract: Recommender systems apply knowledge discovery techniques to the problem of making personalized recommendations for information, products or services during a live interaction. These systems, especially the k-nearest neighbor collaborative ltering based ones, are achieving widespread success on the Web. The tremendous growth in the amount of available information and the number of visitors to Web sites in recent years poses some key challenges for recommender systems. These are: producing high quality recommendations, performing many recommendations per second for millions of users and items and achieving high coverage in the face of data sparsity. In traditional collaborative ltering systems the amount of work increases with the number of participants in the system. New recommender system technologies are needed that can quickly produce high quality recommendations, even for very large-scale problems. To address these issues we have explored item-based collaborative ltering techniques. Item-based techniques rst analyze the user-item matrix to identify relationships between di erent items, and then use these relationships to indirectly compute recommendations for users. In this paper we analyze di erent item-based recommendation generation algorithms. We look into di erent techniques for computing item-item similarities (e.g., item-item correlation vs. cosine similarities between item vectors) and di erent techniques for obtaining recommendations from them (e.g., weighted sum vs. regression model). Finally, we experimentally evaluate our results and compare them to the basic k-nearest neighbor approach. Our experiments suggest that item-based algorithms provide dramatically better performance than user-based algorithms, while at the same time providing better quality than the best available userbased algorithms.

8,634 citations

Journal ArticleDOI
TL;DR: The key decisions in evaluating collaborative filtering recommender systems are reviewed: the user tasks being evaluated, the types of analysis and datasets being used, the ways in which prediction quality is measured, the evaluation of prediction attributes other than quality, and the user-based evaluation of the system as a whole.
Abstract: Recommender systems have been evaluated in many, often incomparable, ways. In this article, we review the key decisions in evaluating collaborative filtering recommender systems: the user tasks being evaluated, the types of analysis and datasets being used, the ways in which prediction quality is measured, the evaluation of prediction attributes other than quality, and the user-based evaluation of the system as a whole. In addition to reviewing the evaluation strategies used by prior researchers, we present empirical results from the analysis of various accuracy metrics on one content domain where all the tested metrics collapsed roughly into three equivalence classes. Metrics within each equivalency class were strongly correlated, while metrics from different equivalency classes were uncorrelated.

5,686 citations

Proceedings ArticleDOI
22 Oct 1994
TL;DR: GroupLens is a system for collaborative filtering of netnews, to help people find articles they will like in the huge stream of available articles, and protect their privacy by entering ratings under pseudonyms, without reducing the effectiveness of the score prediction.
Abstract: Collaborative filters help people make choices based on the opinions of other people. GroupLens is a system for collaborative filtering of netnews, to help people find articles they will like in the huge stream of available articles. News reader clients display predicted scores and make it easy for users to rate articles after they read them. Rating servers, called Better Bit Bureaus, gather and disseminate the ratings. The rating servers predict scores based on the heuristic that people who agreed in the past will probably agree again. Users can protect their privacy by entering ratings under pseudonyms, without reducing the effectiveness of the score prediction. The entire architecture is open: alternative software for news clients and Better Bit Bureaus can be developed independently and can interoperate with the components we have developed.

5,644 citations

Proceedings Article
24 Jul 1998
TL;DR: Several algorithms designed for collaborative filtering or recommender systems are described, including techniques based on correlation coefficients, vector-based similarity calculations, and statistical Bayesian methods, to compare the predictive accuracy of the various methods in a set of representative problem domains.
Abstract: Collaborative filtering or recommender systems use a database about user preferences to predict additional topics or products a new user might like. In this paper we describe several algorithms designed for this task, including techniques based on correlation coefficients, vector-based similarity calculations, and statistical Bayesian methods. We compare the predictive accuracy of the various methods in a set of representative problem domains. We use two basic classes of evaluation metrics. The first characterizes accuracy over a set of individual predictions in terms of average absolute deviation. The second estimates the utility of a ranked list of suggested items. This metric uses an estimate of the probability that a user will see a recommendation in an ordered list. Experiments were run for datasets associated with 3 application areas, 4 experimental protocols, and the 2 evaluation metr rics for the various algorithms. Results indicate that for a wide range of conditions, Bayesian networks with decision trees at each node and correlation methods outperform Bayesian-clustering and vector-similarity methods. Between correlation and Bayesian networks, the preferred method depends on the nature of the dataset, nature of the application (ranked versus one-by-one presentation), and the availability of votes with which to make predictions. Other considerations include the size of database, speed of predictions, and learning time.

4,557 citations

Journal ArticleDOI
TL;DR: Item-to-item collaborative filtering (ITF) as mentioned in this paper is a popular recommendation algorithm for e-commerce Web sites that scales independently of the number of customers and number of items in the product catalog.
Abstract: Recommendation algorithms are best known for their use on e-commerce Web sites, where they use input about a customer's interests to generate a list of recommended items. Many applications use only the items that customers purchase and explicitly rate to represent their interests, but they can also use other attributes, including items viewed, demographic data, subject interests, and favorite artists. At Amazon.com, we use recommendation algorithms to personalize the online store for each customer. The store radically changes based on customer interests, showing programming titles to a software engineer and baby toys to a new mother. There are three common approaches to solving the recommendation problem: traditional collaborative filtering, cluster models, and search-based methods. Here, we compare these methods with our algorithm, which we call item-to-item collaborative filtering. Unlike traditional collaborative filtering, our algorithm's online computation scales independently of the number of customers and number of items in the product catalog. Our algorithm produces recommendations in real-time, scales to massive data sets, and generates high quality recommendations.

4,372 citations


Network Information
Related Topics (5)
Web page
50.3K papers, 975.1K citations
67% related
Web service
57.6K papers, 989K citations
67% related
Mobile computing
51.3K papers, 1M citations
64% related
Mobile device
58.6K papers, 942.8K citations
64% related
Authentication
74.7K papers, 867.1K citations
62% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20219
20207
201911
201812
201710
201620