scispace - formally typeset
Search or ask a question
Topic

Slow-wave sleep

About: Slow-wave sleep is a research topic. Over the lifetime, 6543 publications have been published within this topic receiving 320663 citations. The topic is also known as: deep sleep.


Papers
More filters
Journal ArticleDOI
TL;DR: This analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep.
Abstract: Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain's dynamic working point leading to increased stability and decreased effective connectivity.

105 citations

Journal ArticleDOI
07 Oct 2005-Science
TL;DR: It is demonstrated in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG and regulates cortical synchrony in the adult.
Abstract: Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

105 citations

Journal ArticleDOI
TL;DR: Higher spindle density predicted better performance on verbal learning, visual attention and verbal fluency, whereas spindle frequency and slow wave density or slope predicted fewer cognitive performance variables.
Abstract: Spindles and slow waves are hallmarks of non-rapid eye movement sleep. Both these oscillations are markers of neuronal plasticity, and play a role in memory and cognition. Normal ageing is associated with spindle and slow wave decline and cognitive changes. The present study aimed to assess whether spindle and slow wave characteristics during a baseline night predict cognitive performance in healthy older adults the next morning. Specifically, we examined performance on tasks measuring selective and sustained visual attention, declarative verbal memory, working memory and verbal fluency. Fifty-eight healthy middle-aged and older adults (aged 50-91years) without sleep disorders underwent baseline polysomnographic sleep recording followed by neuropsychological assessment the next morning. Spindles and slow waves were detected automatically on artefact-free non-rapid eye movement sleep electroencephalogram. All-night stage N2 spindle density (no./min) and mean frequency (Hz) and all-night non-rapid eye movement sleep slow wave density (no./min) and mean slope (V/s) were analysed. Pearson's correlations were performed between spindles, slow waves, polysomnography and cognitive performance. Higher spindle density predicted better performance on verbal learning, visual attention and verbal fluency, whereas spindle frequency and slow wave density or slope predicted fewer cognitive performance variables. In addition, rapid eye movement sleep duration was associated with better verbal learning potential. These results suggest that spindle density is a marker of cognitive functioning in older adults and may reflect neuroanatomic integrity. Rapid eye movement sleep may be a marker of age-related changes in acetylcholine transmission, which plays a role in new information encoding.

105 citations

Journal ArticleDOI
TL;DR: It appears that reduced slow wave sleep may be related to a neurodevelopmental disorder related to the defect state in schizophrenia, and the pathophysiological significance of the defective REM rebound and the REM sleep abnormalities in schizophrenia remain uncertain.

105 citations

Journal ArticleDOI
01 Nov 2004-Chest
TL;DR: The phenomenon of FNE in children was well demonstrated and it is proposed that a single-night sleep study is adequate and more cost-effective in assessing for childhood SDB.

105 citations


Network Information
Related Topics (5)
Dopaminergic
29K papers, 1.4M citations
83% related
Dopamine
45.7K papers, 2.2M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
82% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Hippocampus
34.9K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202364
2022103
2021171
2020163
2019166
2018152