scispace - formally typeset
Search or ask a question
Topic

Slow-wave sleep

About: Slow-wave sleep is a research topic. Over the lifetime, 6543 publications have been published within this topic receiving 320663 citations. The topic is also known as: deep sleep.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that sleep is not homogenous in insects, and suggest that waking behavior and the associated synaptic plasticity mechanisms determine the timing and intensity of deep sleep stages in Drosophila.
Abstract: How might one determine whether simple animals such as flies sleep in stages? Sleep in mammals is a dynamic process involving different stages of sleep intensity, and these are typically associated with measurable changes in brain activity (Blake and Gerard, 1937; Rechtschaffen and Kales, 1968; Webb and Agnew, 1971). Evidence for different sleep stages in invertebrates remains elusive, even though it has been well established that many invertebrate species require sleep (Campbell and Tobler, 1984; Hendricks et al., 2000; Shaw et al., 2000; Sauer et al., 2003). Here we used electrophysiology and arousal-testing paradigms to show that the fruit fly, Drosophila melanogaster, transitions between deeper and lighter sleep within extended bouts of inactivity, with deeper sleep intensities after ∼15 and ∼30 min of inactivity. As in mammals, the timing and intensity of these dynamic sleep processes in flies is homeostatically regulated and modulated by behavioral experience. Two molecules linked to synaptic plasticity regulate the intensity of the first deep sleep stage. Optogenetic upregulation of cyclic adenosine monophosphate during the day increases sleep intensity at night, whereas loss of function of a molecule involved in synaptic pruning, the fragile-X mental retardation protein, increases sleep intensity during the day. Our results show that sleep is not homogenous in insects, and suggest that waking behavior and the associated synaptic plasticity mechanisms determine the timing and intensity of deep sleep stages in Drosophila.

192 citations

Journal ArticleDOI
TL;DR: Some of the characteristics of slow wave sleep, how it is measured and regulated, as well as the contribution of SWS to sleep propensity and sleep maintenance are summarized.
Abstract: Sleep is thought to be important for efficient daytime functioning. Deep nonrapid eye movement (NREM) sleep, also known as slow wave sleep (SWS), is considered to be the most restorative sleep stage and to be associated with sleep quality1,2 and maintenance of sleep.3 However, there is much to be learned about the function of SWS and its effects on other physiologic processes and daytime functioning. This review briefly summarizes some of the characteristics of SWS, how it is measured and regulated, as well as the contribution of SWS to sleep propensity and sleep maintenance.

192 citations

Journal ArticleDOI
TL;DR: The results show that the difference in CRPS between sleep stages exceeds the difference between young and elderly, suggesting that sleep regulation has a significantly stronger effect on cardiorespiratory coupling than healthy aging.
Abstract: Integrated physiological systems, such as the cardiac and the respiratory system, exhibit complex dynamics that are further influenced by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and the respiratory system adjust their rhythms, despite continuous fluctuations in their dynamics, we study the phase synchronization of heartbeat intervals and respiratory cycles. The nature of this interaction, its physiological and clinical relevance, and its relation to mechanisms of neural control is not well understood. We investigate whether and how cardiorespiratory phase synchronization (CRPS) responds to changes in physiological states and conditions. We find that the degree of CRPS in healthy subjects dramatically changes with sleep-stage transitions and exhibits a pronounced stratification pattern with a 400% increase from rapid eye movement sleep and wake, to light and deep sleep, indicating that sympatho-vagal balance strongly influences CRPS. For elderly subjects, we find that the overall degree of CRPS is reduced by approximately 40%, which has important clinical implications. However, the sleep-stage stratification pattern we uncover in CRPS does not break down with advanced age, and surprisingly, remains stable across subjects. Our results show that the difference in CRPS between sleep stages exceeds the difference between young and elderly, suggesting that sleep regulation has a significantly stronger effect on cardiorespiratory coupling than healthy aging. We demonstrate that CRPS and the traditionally studied respiratory sinus arrhythmia represent different aspects of the cardiorespiratory interaction, and that key physiologic variables, related to regulatory mechanisms of the cardiac and respiratory systems, which influence respiratory sinus arrhythmia, do not affect CRPS.

192 citations

Journal ArticleDOI
01 Jun 2009-Sleep
TL;DR: Hypersomnia, especially with long sleep time, is frequently associated with evening chronotype and young age, and is inadequately diagnosed using MSLT.
Abstract: OBJECTIVE: To characterize the clinical, psychological, and sleep pattern of idiopathic hypersomnia with and without long sleep time, and provide normative values for 24-hour polysomnography. SETTING: University Hospital. DESIGN: Controlled, prospective cohort. PARTICIPANTS: 75 consecutive patients (aged 34 +/- 12 y) with idiopathic hypersomnia and 30 healthy matched controls. INTERVENTION: Patients and controls underwent during 48 hours a face-to-face interview, questionnaires, human leukocyte antigen genotype, a night polysomnography and multiple sleep latency test (MSLT), followed by 24-h ad libitum sleep monitoring. RESULTS: Hypersomniacs had more fatigue, higher anxiety and depression scores, and more frequent hypnagogic hallucinations (24%), sleep paralysis (28%), sleep drunkenness (36%), and unrefreshing naps (46%) than controls. They were more frequently evening types. DQB1*0602 genotype was similarly found in hypersomniacs (24.2%) and controls (19.2%). Hypersomniacs had more frequent slow wave sleep after 06:00 than controls. During 24-h polysomnography, the 95% confidence interval for total sleep time was 493-558 min in controls, versus 672-718 min in hypersomniacs. There were 40 hypersomniacs with and 35 hypersomniacs without long ( > 600 min) sleep time. The hypersomniacs with long sleep time were younger (29 +/- 10 vs 40 +/- 13 y, P = 0.0002), slimmer (body mass index: 26 +/- 5 vs 23 +/- 4 kg/m2; P = 0.005), and had lower Horne-Ostberg scores and higher sleep efficiencies than those without long sleep time. MSLT latencies were normal (> 8 min) in 71% hypersomniacs with long sleep time. CONCLUSIONS: Hypersomnia, especially with long sleep time, is frequently associated with evening chronotype and young age. It is inadequately diagnosed using MSLT.

191 citations

Journal ArticleDOI
TL;DR: It is concluded that in the early part of the light period, 3 h waking prolongs non-REM sleep, whereas 6 h waking also enhances non- REM sleep intensity.

191 citations


Network Information
Related Topics (5)
Dopaminergic
29K papers, 1.4M citations
83% related
Dopamine
45.7K papers, 2.2M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
82% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Hippocampus
34.9K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202364
2022103
2021171
2020163
2019166
2018152