scispace - formally typeset
Search or ask a question
Topic

Slow-wave sleep

About: Slow-wave sleep is a research topic. Over the lifetime, 6543 publications have been published within this topic receiving 320663 citations. The topic is also known as: deep sleep.


Papers
More filters
Journal ArticleDOI
TL;DR: The data show that even a low dose of caffeine affects the sleep EEG, however, the effects of caffeine did not completely mimic the spectral changes observed during physiological sleep.

188 citations

Journal ArticleDOI
TL;DR: It is proposed that during W, the LC cells are under a GABAergic inhibitory tone which progressively increases at the entrance and during SWS and PS and is responsible for the inactivation of these neurons during these states.
Abstract: It is well known that noradrenergic locus coeruleus (LC) neurons decrease their activity during slow wave sleep (SWS) and are virtually quiescent during paradoxical sleep (PS). It has been proposed that a GABAergic input could be directly responsible for this sleep-dependent neuronal inactivation. To test this hypothesis, we used a new method combining polygraphic recordings, microiontophoresis and single-unit extracellular recordings in unanaesthetized head-restrained rats. We found that iontophoretic application of bicuculline, a specific GABA(A)-receptor antagonist, during PS and SWS restore a tonic firing in the LC noradrenergic neurons. We further observed that the application of bicuculline during wakefulness (W) induced an increase of the discharge rate. Of particular importance for the interpretation of these results, using the microdialysis technique, Nitz and Siegel (Neuroscience, 1997; 78: 795) recently found an increase of the GABA release in the cat LC during SWS and PS as compared with waking values. Based on these and our results, we therefore propose that during W, the LC cells are under a GABAergic inhibitory tone which progressively increases at the entrance and during SWS and PS and is responsible for the inactivation of these neurons during these states.

187 citations

Journal ArticleDOI
TL;DR: It is concluded that arousal from NREM sleep evokes a pressor response caused by increased peripheral vascular resistance, and increased sympathetic outflow to skeletal muscle may contribute to, but is not required for, this vasoconstriction.
Abstract: The arterial pressure elevations that accompany sleep apneas may be caused by chemoreflex stimulation, negative intrathoracic pressure, and/or arousal. To assess the neurocirculatory effects of arousal alone, we applied graded auditory stimuli during non-rapid-eye-movement (NREM) sleep in eight healthy humans. We measured muscle sympathetic nerve activity (intraneural microelectrodes), electroencephalogram (EEG; C4/A1 and O1/A2), arterial pressure (photoelectric plethysmography), heart rate (electrocardiogram), and stroke volume (impedance cardiography). Auditory stimuli caused abrupt increases in systolic and diastolic pressures (21 +/- 2 and 15 +/- 1 mmHg) and heart rate (11 +/- 2 beats/min). Cardiac output decreased (-10%). Stimuli that produced EEG evidence of arousal evoked one to two large bursts of sympathetic activity (316 +/- 46% of baseline amplitude). Stimuli that did not alter EEG frequency produced smaller but consistent pressor responses even though no sympathetic activation was observed. We conclude that arousal from NREM sleep evokes a pressor response caused by increased peripheral vascular resistance. Increased sympathetic outflow to skeletal muscle may contribute to, but is not required for, this vasoconstriction. The neurocirculatory effects of arousal may augment those caused by asphyxia during episodes of sleep-disordered breathing.

187 citations

Journal ArticleDOI
TL;DR: Although there was no significant difference in firing rate between active and quiet waking, discharge rates were significantly increased during transient elevations of the EMG, but these rate increases usually were associated with specific motor behaviors only.

187 citations

Journal ArticleDOI
TL;DR: The data on REM sleep provide the first biochemically validated and direct evidence that suppression of DRN serotonergic activity increases REM sleep, and furnish a key complement to the laboratory's in vitro data indicating that mesopontine cholinergic neurons, a target ofDRN projections, are inhibited by 5-HT.
Abstract: In vivo microdialysis was used to analyze the role of dorsal raphe nucleus (DRN) neurons in regulating the sleep-waking cycle. Measurements of extracellular serotonin (5-HT) were made in the DRN of freely moving adult cats before and during microdialysis perfusion of 8- hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a selective 5-HT1A receptor agonist, in artificial CSF. Behavioral state alterations were measured by simultaneous polygraphic recordings. During waking and artificial CSF perfusion of probes histologically localized to the DRN, extracellular 5-HT was 4 fmol/7.5 micro L dialysate sample. With the addition of 8-OH-DPAT (10 microM in artificial CSF) to the perfusate, 5- HT levels in the same state decreased 50%, to 2 fmol/sample (p < 0.01), presumably through 5-HT1A autoreceptor-mediated inhibition of serotonergic neural activity. Concomitantly, this 8-OH-DPAT perfusion produced a short latency, threefold increase in rapid eye movement (REM) sleep, from 10 to 30% of the total recorded time (p < 0.05), whereas waking was not significantly affected. In contrast, and suggesting DRN specificity, 8-OH-DPAT delivery through a probe in the aqueduct did not increase REM sleep but rather tended to increase waking and decrease slow wave sleep. The data on REM sleep provide the first biochemically validated and direct evidence that suppression of DRN serotonergic activity increases REM sleep, and furnish a key complement to our laboratory's in vitro data indicating that mesopontine cholinergic neurons, a target of DRN projections, are inhibited by 5-HT. The 8-OH-DPAT-induced reduction of DRN 5-HT is consistent with the hypothesis that the concomitant REM sleep disinhibition is mediated by DRN serotonergic projections to mesopontine cholinergic neurons, which other data implicate in REM sleep production.

187 citations


Network Information
Related Topics (5)
Dopaminergic
29K papers, 1.4M citations
83% related
Dopamine
45.7K papers, 2.2M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
82% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Hippocampus
34.9K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202364
2022103
2021171
2020163
2019166
2018152