scispace - formally typeset
Search or ask a question

Showing papers on "Small hairpin RNA published in 2005"


Journal ArticleDOI
09 Dec 2005-Science
TL;DR: It is shown that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels, and TORC2 is a critical target of L KB1/AMPK signals in the regulation of gluconeogenesis.
Abstract: The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)–activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element–binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1α expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.

1,850 citations


Journal ArticleDOI
TL;DR: Large-scale-arrayed, sequence-verified libraries comprising more than 140,000 second-generation short hairpin RNA expression plasmids, covering a substantial fraction of all predicted genes in the human and mouse genomes are generated.
Abstract: Loss-of-function phenotypes often hold the key to understanding the connections and biological functions of biochemical pathways. We and others previously constructed libraries of short hairpin RNAs that allow systematic analysis of RNA interference-induced phenotypes in mammalian cells. Here we report the construction and validation of second-generation short hairpin RNA expression libraries designed using an increased knowledge of RNA interference biochemistry. These constructs include silencing triggers designed to mimic a natural microRNA primary transcript, and each target sequence was selected on the basis of thermodynamic criteria for optimal small RNA performance. Biochemical and phenotypic assays indicate that the new libraries are substantially improved over first-generation reagents. We generated large-scale-arrayed, sequence-verified libraries comprising more than 140,000 second-generation short hairpin RNA expression plasmids, covering a substantial fraction of all predicted genes in the human and mouse genomes. These libraries are available to the scientific community.

684 citations


Journal ArticleDOI
TL;DR: It is shown that polymerase II-transcribed shRNAs display very efficient knockdown of gene expression when the shRNA is embedded in a microRNA context, which is an important step toward using bar-coding strategies to follow loss of specific sequences in complex populations.
Abstract: The advent of RNA interference has led to the ability to interfere with gene expression and greatly expanded our ability to perform genetic screens in mammalian cells. The expression of short hairpin RNA (shRNA) from polymerase III promoters can be encoded in transgenes and used to produce small interfering RNAs that down-regulate specific genes. In this study, we show that polymerase II-transcribed shRNAs display very efficient knockdown of gene expression when the shRNA is embedded in a microRNA context. Importantly, our shRNA expression system [called PRIME (potent RNA interference using microRNA expression) vectors] allows for the multicistronic cotranscription of a reporter gene, thereby facilitating the tracking of shRNA production in individual cells. Based on this system, we developed a series of lentiviral vectors that display tetracycline-responsive knockdown of gene expression at single copy. The high penetrance of these vectors will facilitate genomewide loss-of-function screens and is an important step toward using bar-coding strategies to follow loss of specific sequences in complex populations.

575 citations


Journal ArticleDOI
TL;DR: By tightly regulating Trp53 knock-down using tetracycline-based systems, this primary microRNA–based short hairpin RNA vector system is markedly similar to cDNA overexpression systems and is a powerful tool for studying gene function in cells and animals.
Abstract: RNA interference is a powerful method for suppressing gene expression in mammalian cells. Stable knock-down can be achieved by continuous expression of synthetic short hairpin RNAs, typically from RNA polymerase III promoters. But primary microRNA transcripts, which are endogenous triggers of RNA interference, are normally synthesized by RNA polymerase II. Here we show that RNA polymerase II promoters expressing rationally designed primary microRNA-based short hairpin RNAs produce potent, stable and regulatable gene knock-down in cultured cells and in animals, even when present at a single copy in the genome. Most notably, by tightly regulating Trp53 knock-down using tetracycline-based systems, we show that cultured mouse fibroblasts can be switched between proliferative and senescent states and that tumors induced by Trp53 suppression and cooperating oncogenes regress upon re-expression of Trp53. In practice, this primary microRNA-based short hairpin RNA vector system is markedly similar to cDNA overexpression systems and is a powerful tool for studying gene function in cells and animals.

546 citations


Journal ArticleDOI
TL;DR: Synthetic 29-mer shRNAs are found to be more potent inducers of RNAi than small interfering RNAs, and these studies provide the basis for an improved approach to triggering experimental silencing via the RNAi pathway.
Abstract: Designing potent silencing triggers is key to the successful application of RNA interference (RNAi) in mammals. Recent studies suggest that the assembly of RNAi effector complexes is coupled to Dicer cleavage. Here we examine whether transfection of optimized Dicer substrates results in an improved RNAi response. Dicer cleavage of chemically synthesized short hairpin RNAs (shRNAs) with 29-base-pair stems and 2-nucleotide 3' overhangs produced predictable homogeneous small RNAs comprising the 22 bases at the 3' end of the stem. Consequently, direct comparisons of synthetic small interfering RNAs and shRNAs that yield the same small RNA became possible. We found synthetic 29-mer shRNAs to be more potent inducers of RNAi than small interfering RNAs. Maximal inhibition of target genes was achieved at lower concentrations and silencing at 24 h was often greater. These studies provide the basis for an improved approach to triggering experimental silencing via the RNAi pathway.

526 citations


Journal ArticleDOI
TL;DR: Because of the ability ofRNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.

390 citations


Journal ArticleDOI
01 May 2005-RNA
TL;DR: The data presented show that various attributes of the 3' end structure play a primary role in determining the position of Dicer cleavage in both dsRNA and unimolecular, short hairpin RNA (shRNA).
Abstract: Dicer processes long double-stranded RNA (dsRNA) and pre-microRNAs to generate the functional intermediates (short interfering RNAs and microRNAs) of the RNA interference pathway. Here we identify features of RNA structure that affect Dicer specificity and efficiency. The data presented show that various attributes of the 3′ end structure, including overhang length and sequence composition, play a primary role in determining the position of Dicer cleavage in both dsRNA and unimolecular, short hairpin RNA (shRNA). We also demonstrate that siRNA end structure affects overall silencing functionality. Awareness of these new features of Dicer cleavage specificity as it is related to siRNA functionality provides a more detailed understanding of the RNAi mechanism and can shape the development of hairpins with enhanced functionality.

332 citations


Journal ArticleDOI
TL;DR: By performing in vitro Drosha processing reactions with RNA substrates of various sizes and structures, it is shown that Drosha function also requires single-stranded RNA extensions located outside the pri-miRNA hairpin.

329 citations


Journal ArticleDOI
TL;DR: The results provide the first evidence that human RISCs programmed with siRNA are present in the nucleus and can knock down target RNA levels, and reveal new roles for the RNAi machinery in modulating post-transcriptional gene expression inThe nucleus.
Abstract: RNA interference (RNAi) has become a research tool to control gene expression in various organisms and holds potential as a new therapeutic strategy. The mechanism of small interfering RNA (siRNA)-mediated RNAi involves target mRNA cleavage and destruction in the cytoplasm. We investigated siRNA-mediated induction of RNAi in the nucleus of human cells. Notably, we observed highly efficient knockdown of small nuclear RNA 7SK by siRNA. siRNA- and microRNA-programmed RNA-induced silencing complexes (RISCs) were present in both cytoplasmic and nuclear compartments and specifically cleaved their perfectly matched target RNA with markedly high efficiencies. Our results provide the first evidence that human RISCs programmed with siRNA are present in the nucleus and can knock down target RNA levels. These studies reveal new roles for the RNAi machinery in modulating post-transcriptional gene expression in the nucleus.

324 citations


Journal ArticleDOI
Rui Yi1, Brian P. Doehle, Yi Qin, Ian G. Macara, Bryan R. Cullen 
01 Feb 2005-RNA
TL;DR: It is demonstrated that overexpressed sh RNAs can saturate the activity of endogenous Exportin 5, a factor required for nuclear export of both shRNAs and pre-miRNAs, and simultaneous overexpression of exportin 5 reverses this effect.
Abstract: Plasmids or viral vectors that express short hairpin RNAs (shRNAs) have emerged as important tools for the stable inhibition of specific genes by RNA interference. shRNAs are structural and functional homologs of pre-microRNAs, intermediates in the production of endogenously encoded microRNAs (miRNAs). Therefore, overexpressed shRNAs could inhibit miRNA function by competing for a limiting level of one or more factors involved in miRNA biogenesis or function. Here, we demonstrate that overexpressed shRNAs can saturate the activity of endogenous Exportin 5, a factor required for nuclear export of both shRNAs and pre-miRNAs. While shRNA overexpression can therefore inhibit miRNA function, simultaneous overexpression of Exportin 5 reverses this effect. Moreover, Exportin 5 overexpression can significantly enhance RNA interference mediated by shRNAs. These data have implications for the future clinical utilization of shRNAs and also provide a simple method to enhance RNA interference by shRNAs in culture.

305 citations


Journal ArticleDOI
TL;DR: A pHANNIBAL-like silencing vector, pSilent-1, for ascomycete fungi, which carries a hygromycin resistance cassette and a transcriptional unit for hairpin RNA expression with a spacer of a cutinase gene intron from the rice blast fungus Magnaporthe oryzae, shows higher efficiency in silencing of the eGFP gene.

Journal ArticleDOI
TL;DR: The novel hypothesis that non‐hybridized and possible hybridized forms of siRNA can move between mammalian cells through connexin‐specific gap junctions is supported.
Abstract: The purpose of this study was to determine whether oligonucleotides the size of siRNA are permeable to gap junctions and whether a specific siRNA for DNA polymerase β (pol β) can move from one cell to another via gap junctions, thus allowing one cell to inhibit gene expression in another cell directly. To test this hypothesis, fluorescently labelled oligonucleotides (morpholinos) 12, 16 and 24 nucleotides in length were synthesized and introduced into one cell of a pair using a patch pipette. These probes moved from cell to cell through gap junctions composed of connexin 43 (Cx43). Moreover, the rate of transfer declined with increasing length of the oligonucleotide. To test whether siRNA for pol β was permeable to gap junctions we used three cell lines: (1) NRK cells that endogenously express Cx43; (2) Mβ16tsA cells, which express Cx32 and Cx26 but not Cx43; and (3) connexin-deficient N2A cells. NRK and Mβ16tsA cells were each divided into two groups, one of which was stably transfected to express a small hairpin RNA (shRNA), which gives rise to siRNA that targets pol β. These two pol β knockdown cell lines (NRK-kcdc and Mβ16tsA-kcdc) were co-cultured with labelled wild type, NRK-wt or Mβ16tsA-wt cells or N2A cells. The levels of pol β mRNA and protein were determined by semiquantitative RT-PCR and immunoblotting. Co-culture of Mβ16tsA-kcdc cells with Mβ16tsA-wt, N2A or NRK-wt cells had no effect on pol β levels in these cells. Similarly, co-culture of NRK-kcdc with N2A cells had no effect on pol β levels in the N2A cells. In contrast, co-culture of NRK-kcdc with NRK-wt cells resulted in a significant reduction in pol β in the wt cells. The inability of Mβ16tsA-kcdc cells to transfer siRNA is consistent with the fact that oligonucleotides of the 12 nucleotide length were not permeable to Cx32/Cx26 channels. This suggested that Cx43 but not Cx32/Cx26 channels allowed the cell-to-cell movement of the siRNA. These results support the novel hypothesis that non-hybridized and possible hybridized forms of siRNA can move between mammalian cells through connexin-specific gap junctions.

Journal ArticleDOI
TL;DR: The results demonstrate that the combinatorial vector suppresses HIV replication long term in a more-than-additive fashion relative to the single shRNA or double shRNA/ribozyme or decoy combinations.

Journal ArticleDOI
TL;DR: This work has identified the receptor tyrosine kinase Axl as a novel regulator of endothelial cell haptotactic migration towards the matrix factor vitronectin and shows that Axl is necessary for in vivo angiogenesis in a mouse model.
Abstract: A focus of contemporary cancer therapeutic development is the targeting of both the transformed cell and the supporting cellular microenvironment. Cell migration is a fundamental cellular behavior required for the complex interplay between multiple cell types necessary for tumor development. We therefore developed a novel retroviral-based screening technology in primary human endothelial cells to discover genes that control cell migration. We identified the receptor tyrosine kinase Axl as a novel regulator of endothelial cell haptotactic migration towards the matrix factor vitronectin. Using small interfering RNA-mediated silencing and overexpression of wild-type or mutated receptor proteins, we show that Axl is a key regulator of multiple angiogenic behaviors including endothelial cell migration, proliferation, and tube formation in vitro. Moreover, using sustained, retrovirally delivered short hairpin RNA (shRNA) Axl knockdown, we show that Axl is necessary for in vivo angiogenesis in a mouse model. Furthermore, we show that Axl is also required for human breast carcinoma cells to form a tumor in vivo. These findings indicate that Axl regulates processes vital for both neovascularization and tumorigenesis. Disruption of Axl signaling using a small-molecule inhibitor will hence simultaneously affect both the tumor and stromal cell compartments and thus represents a unique approach for cancer therapeutic development.

Journal ArticleDOI
TL;DR: This mini‐review elaborate upon the rationale and design strategies for creating Dicer substrate RNAs that provide enhanced knockdown of targeted RNAs and minimize the utilization of the sense strand as RNAi effectors.

Journal ArticleDOI
TL;DR: It is concluded that activated Stat3 protein plays a critical role in the induction of breast tumors induced by 4T1 cells by enhancing the expression of several important genes including c-Myc and the metastatic regulator Twist.
Abstract: Constitutively activated STAT3 is involved in the formation of multiple types of tumors including breast cancer. We examined the effects of Stat3 protein knockdown by RNA interference using a dicistronic lentivirus small hairpin (shRNA) delivery system on the growth of mammary tumors in BALB/c mice induced by the 4T1 cell line. A single exposure of 4T1 cells to shRNA/STAT3 lentivirus transduced 75% of the cells with green fluorescent protein (GFP) within 96 hours. In cells selected for GFP expression, neither Stat3 protein nor phosphotyrosine Stat3 was detected. Tumor formation induced by injecting 4T1 cells into the mammary fat pad was blocked by expression of the shRNA for STAT3 whereas all mice injected with 4T1 cells expressing only GFP efficiently formed tumors. c-Myc expression was reduced 75% in cells expressing greatly reduced levels of Stat3 compared with the GFP control. Of interest, the level of activated Src, which is known to activate Stat3, was virtually eliminated but the level of the Src protein itself remained the same. Importantly, expression of Twist protein, a metastatic regulator, was eliminated in STAT3 knockdown cells. Invasion activity of STAT3 knockdown cells was strongly inhibited. However, the proliferation rate of cells in Stat3 knockdown cells was similar to that of the GFP control; the cell cycle was also not affected. We conclude from these studies that activated Stat3 protein plays a critical role in the induction of breast tumors induced by 4T1 cells by enhancing the expression of several important genes including c-Myc and the metastatic regulator Twist. These studies suggest that stable expression of small interfering RNA for STAT3 has potential as a therapeutic strategy for breast cancer.

Journal ArticleDOI
TL;DR: It is demonstrated that reduction of SRC-3 expression by small interfering RNA decreases proliferation, delays the G1-S transition, and increases cell apoptosis of different prostate cancer cell lines, and findings indicate that S RC-3 is an important regulator of prostate cancer proliferation and survival.
Abstract: Prostate cancer is the most common cancer in men in America. Currently, steroid receptor coactivators have been proposed to mediate the development and progression of prostate cancer, at times in a steroid-independent manner. Steroid receptor coactivator-3 (SRC-3, p/CIP, AIB1, ACTR, RAC3, and TRAM-1) is a member of the p160 family of coactivators for nuclear hormone receptors including the androgen receptor. SRC-3 is frequently amplified or overexpressed in a number of cancers. However, the role of SRC-3 in cancer cell proliferation and survival is still poorly understood. In this study, we show that SRC-3 is overexpressed in prostate cancer patients and its overexpression correlates with prostate cancer proliferation and is inversely correlated with apoptosis. Consistent with patient data, we have observed that reduction of SRC-3 expression by small interfering RNA decreases proliferation, delays the G1-S transition, and increases cell apoptosis of different prostate cancer cell lines. Furthermore, with decreased SRC-3 expression, proliferating cell nuclear antigen and Bcl-2 expression, as well as bromodeoxyuridine incorporation in prostate cancer cells are reduced. Finally, knockdown of SRC-3 with inducible short hairpin RNA expression in prostate cancer cells decreased tumor growth in nude mice. Taken together, these findings indicate that SRC-3 is an important regulator of prostate cancer proliferation and survival.

Book ChapterDOI
TL;DR: The emerging in vivo application of non‐viral delivery systems for RNAi for functional genomics will provide a foundation for further development of RNAi therapeutics, including the rapid adaptation of ligand‐targeted plasmid‐based nanoparticles forRNAi agents.
Abstract: RNAi has rapidly become a powerful tool for drug target discovery and validation in cell culture, and now has largely displaced efforts with antisense and ribozymes. Consequently, interest is rapidly growing for extension of its application to in vivo systems, such as animal disease models and human therapeutics. Studies on RNAi have resulted in two basic methods for its use for gene selective inhibition: 1) cytoplasmic delivery of short dsRNA oligonucleotides (siRNA), which mimics an active intermediate of an endogenous RNAi mechanism and 2) nuclear delivery of gene expression cassettes that express a short hairpin RNA (shRNA), which mimics the micro interfering RNA (miRNA) active intermediate of a different endogenous RNAi mechanism. Non‐viral gene delivery systems are a diverse collection of technologies that are applicable to both of these forms of RNAi. Importantly, unlike antisense and ribozyme systems, a remarkable trait of siRNA is a lack of dependence on chemical modifications blocking enzymatic degradation, although chemical protection methods developed for the earlier systems are being incorporated into siRNA and are generally compatible with non‐viral delivery systems. The use of siRNA is emerging more rapidly than for shRNA, in part due to the increased effort required to construct shRNA expression systems before selection of active sequences and verification of biological activity are obtained. In contrast, screens of many siRNA sequences can be accomplished rapidly using synthetic oligos. It is not surprising that the use of siRNA in vivo is also emerging first. Initial in vivo studies have been reported for both viral and non‐viral delivery but viral delivery is limited to shRNA. This review describes the emerging in vivo application of non‐viral delivery systems for RNAi for functional genomics, which will provide a foundation for further development of RNAi therapeutics. Of interest is the rapid adaptation of ligand‐targeted plasmid‐based nanoparticles for RNAi agents. These systems are growing in capabilities and beginning to pose a serious rival to viral vector based gene delivery. The activity of siRNA in the cytoplasm may lower the hurdle and thereby accelerate the successful development of therapeutics based on targeted non‐viral delivery systems.

Journal ArticleDOI
15 Mar 2005-Blood
TL;DR: In this paper, the authors used lentiviral-delivered RNA interference (RNAi) to inhibit the growth of a model of primary effusion lymphoma (PEL) in vitro and in vivo.

Journal ArticleDOI
TL;DR: A new Pol II system is demonstrated that directs efficient shRNA synthesis and mediates strong RNAi at levels that are comparable with the commonly used Pol III systems and synthesizes a marker protein under control of the same promoter as the shRNA, thus providing an unequivocal indicator.
Abstract: RNA interference (RNAi) mediates gene silencing in many eukaryotes and has been widely used to investigate gene functions. A common method to induce sustained RNAi is introducing plasmids that synthesize short hairpin RNAs (shRNAs) using Pol III promoters. While these promoters synthesize shRNAs and elicit RNAi efficiently, they lack cell specificity. Monitoring shRNA expression levels in individual cells by Pol III promoters is also difficult. An alternative way to deliver RNAi is to use Pol II-directed synthesis of shRNA. Previous efforts in developing a Pol II system have been sparse and the results were conflicting, and the usefulness of those Pol II vectors has been limited due to low efficacy. Here we demonstrate a new Pol II system that directs efficient shRNA synthesis and mediates strong RNAi at levels that are comparable with the commonly used Pol III systems. In addition, this system synthesizes a marker protein under control of the same promoter as the shRNA, thus providing an unequivocal indicator, not only to the cells that express the shRNA, but also to the levels of the shRNA expression. This system may be adapted for in vivo shRNA expression and gene silencing.

Journal ArticleDOI
TL;DR: dsCheck (), web-based online software for estimating off-target effects caused by the long double-stranded RNA (dsRNA) used in RNAi studies, provides a rigorous off- target search to verify previously designed dsRNA sequences but also presents ‘off-target minimized’ ds RNA design, which is essential for reliable experiments inRNAi-based functional genomics.
Abstract: Off-target effects are one of the most serious problems in RNA interference (RNAi). Here, we present dsCheck (http://dsCheck.RNAi.jp/), web-based online software for estimating off-target effects caused by the long double-stranded RNA (dsRNA) used in RNAi studies. In the biochemical process of RNAi, the long dsRNA is cleaved by Dicer into shortinterfering RNA (siRNA) cocktails. The software simulates this process and investigates individual 19 nt substrings of the long dsRNA. Subsequently, the software promptly enumerates a list of potential off-target gene candidates based on the order of off-target effects using its novel algorithm, which significantly improves both the efficiency and the sensitivity of the homology search. The website not only provides a rigorous off-target search to verify previously designed dsRNA sequences but also presents ‘offtarget minimized’ dsRNA design, which is essential for reliable experiments in RNAi-based functional genomics.

Journal ArticleDOI
TL;DR: It is demonstrated that the local expression of Ngal can play a regulatory role in epithelial morphogenesis by promoting the organization of cells into tubular structures while simultaneously negatively modulating the branching effects of HGF.

Journal ArticleDOI
TL;DR: A vector system that allows dexamethasone-inducible RNAi against plant genes and the inducibility of RNAi from this system may be useful in helping to identify the functions of genes which when constitutively silenced give embryo lethality or pleiotropic phenotypes.
Abstract: We describe here a vector system that allows dexamethasone-inducible RNAi against plant genes. The system utilizes a modified pHELLSGATE vector, under the control of the pOp6 promoter, and the synthetic transcription factor, LhGR. We demonstrate that the production of RNAi-inducing hairpin RNA from this system can be regulated by the application and removal of dexamethasone. Silencing of a target gene encoding phytoene desaturase was highly effective 24 h after application of dexamethasone. In the presence of the hormone silencing was maintained for at least 5 days while removal of the inducer resulted in significant recovery within 24 h. A transgene encoding luciferase was silenced with similar speed and efficiency following application of dexamethasone but unlike phytoene desaturase, mRNA levels did not recover within 10 days after dexamethasone was removed. Insertion of target gene sequences into this vector is mediated by Gateway recombination, facilitating its use for high-throughput applications, such as gene discovery or validation. The inducibility of RNAi from this system may be useful in helping to identify the functions of genes which when constitutively silenced give embryo lethality or pleiotropic phenotypes. A modified version of this system may also be used for tissue-specific hairpin RNA expression.

Journal ArticleDOI
25 Aug 2005-Oncogene
TL;DR: It is suggested that CBX7 represses p16Ink4a and p14Arf expression in normal and tumor-derived prostate cells, affecting their growth depending on the status of the p 16Ink 4a/Rb and the p 14Arf/p53 pathways.
Abstract: Control of cell proliferation by Polycomb group proteins (PcG) is an important facet of cellular homeostasis and its disruption can promote tumorigenesis. We recently described CBX7 as a novel PcG protein controlling the growth of normal cells. In an attempt to identify a putative role of CBX7 in tumorigenesis, we analysed CBX7 expression in a panel of cancer cell lines and primary tissues. CBX7 was highly expressed in three different prostate cancer cell lines and present at elevated levels in normal prostate. Ablation of CBX7 expression using short hairpin RNAs (shRNA) resulted in upregulation of p16Ink4a and p14Arf in both LNCaP and PC-3 prostate cell lines. CBX7 knockdown caused an impairment of cell growth that was dependent on the status of the p14Arf/p53 and p16Ink4a/Rb pathways in both normal and cancer prostate cells. CBX7 overexpression in LNCaP cells resulted in a slight growth advantage in both androgen-dependent and -independent conditions. Moreover, CBX7 expression cooperated with c-Myc in rendering LNCaP cells insensitive to growth arrest by androgen receptor inhibition. Together, these data suggest that CBX7 represses p16Ink4a and p14Arf expression in normal and tumor-derived prostate cells, affecting their growth depending on the status of the p16Ink4a/Rb and the p14Arf/p53 pathways.

Journal ArticleDOI
TL;DR: The synthesis of a combinatorial library of 105 dimers of deoxystreptamine and the subsequent identification of compounds with specificity for specific RNA hairpin loop sizes, including tetraloops and octaloops will be useful for the perturbation of RNA function in vivo.
Abstract: The targeting of one mRNA in the transcriptome requires small molecules that bind with substantial affinity and specificity. As such, compounds with specificity for individual RNA secondary structural motifs could be useful for targeting RNA. Described herein is the synthesis of a combinatorial library of 105 dimers of deoxystreptamine and the subsequent identification of compounds with specificity for specific RNA hairpin loop sizes, including tetraloops and octaloops. Such compounds will be useful for the perturbation of RNA function in vivo.

Journal ArticleDOI
TL;DR: A novel mechanism of RNAi suppression by a plant virus Red clover necrotic mosaic virus (RCNMV), in which RCNMV deprives the RNAi machinery of Dicer‐like enzymes that are involved in both siRNA and miRNA biogenesis.
Abstract: RNA interference (RNAi) is a post-transcriptional gene-regulatory mechanism that operates in many eukaryotes. RNAi is induced by double-stranded RNA (dsRNA) and is mainly involved in defence against transposons and viruses. To counteract RNAi, viruses have RNAi suppressors. Here we show a novel mechanism of RNAi suppression by a plant virus Red clover necrotic mosaic virus (RCNMV). To suppress RNAi, RCNMV needs multiple viral components, which include viral RNAs and putative RNA replicase proteins. A close relationship between the RNA elements required for negative-strand RNA synthesis and RNAi suppression suggests a strong link between the viral RNA replication machinery and the RNAi machinery. In a transient assay, RCNMV interferes with the accumulation of small-interfering RNA (siRNAs) in RNAi induced by a hairpin dsRNA and it also interferes with microRNA (miRNA) biogenesis. An Arabidopsis dcl1 mutant showed reduced susceptibility to RCNMV infection. Based on these results, we propose a model in which, to replicate, RCNMV deprives the RNAi machinery of Dicer-like enzymes that are involved in both siRNA and miRNA biogenesis.

Journal ArticleDOI
TL;DR: Results suggest that Cx43 is required for maintaining cell differentiation and the regulation of molecules important in angiogenesis.
Abstract: Connexins are gap junction proteins that assemble into channels that mediate direct intercellular communication. Connexins are well-documented tumor suppressors and are thought to regulate both cell growth and differentiation. As previously reported, most human breast tumors and cell lines down-regulate gap junctions or have defective gap junctional intercellular communication. Furthermore, overexpression of connexins in breast cancer cells inhibits tumor growth in vivo. In this study, we hypothesize that controlled Cx43 down-regulation would induce breast tumor cells to acquire a more aggressive phenotype. Here we report that Cx43 was down-regulated in both normal rat kidney (NRK) cells and human breast cancer cell lines (MDA-MB-231 and Hs578T) by transfection with chemically synthesized small interfering RNA (siRNA) or short hairpin RNA generated from a retroviral infection. Furthermore, we show that retroviral delivery and expression of siRNA directed to different coding regions of Cx43 resulted in differential levels of Cx43 silencing and impaired gap junctional intercellular communication. Cx43-silenced Hs578T cells grew faster and were more migratory. Finally, Western blot analysis revealed that down-regulation of Cx43 resulted in decreased expression of thrombospondin-1, an antiangiogenesis molecule, and increased expression of vascular endothelial growth factor. Taken together, these results suggest that Cx43 is required for maintaining cell differentiation and the regulation of molecules important in angiogenesis.

Book ChapterDOI
TL;DR: In this paper, the authors describe a number of plasmid vectors for generating hairpin RNAs, including those designed for high-throughput cloning, and provide protocols for their use.
Abstract: Double-stranded RNA (dsRNA) induces an endogenous sequence-specific RNA degradation mechanism in most eukaryotic cells. The mechanism can be harnessed to silence genes in plants by expressing self-complementary single-stranded (hairpin) RNA in which the duplexed region has the same sequence as part of the target gene's mRNA. We describe a number of plasmid vectors for generating hairpin RNAs, including those designed for high-throughput cloning, and provide protocols for their use.

Journal ArticleDOI
TL;DR: It is demonstrated that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells, probably because of increased p53 levels.
Abstract: Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 microM, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 microM. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.

Journal ArticleDOI
TL;DR: The data reported here demonstrate that endogenous c-MYC binds to the genomic MTA1 locus and recruits transcriptional coactivators, and short hairpin RNA (shRNA)-mediated knockdown of MTA1 blocks the ability of c- MYC to transform mammalian cells.
Abstract: The c-myc oncogene is among the most commonly overexpressed genes in human cancer. c-myc encodes a basic helix–loop–helix/leucine zipper (bHLH/LZ) transcription factor (c-MYC) that activates a cascade of downstream targets that ultimately mediate cellular transformation. Although a large number of genes are regulated by c-MYC, only a few have been functionally linked to c-MYC-mediated transformation. By expression profiling, the metastasis-associated protein 1 (MTA1) gene was identified here as a target of the c-MYC oncoprotein in primary human cells, a result confirmed in human cancer cells. MTA1 itself has been previously implicated in cellular transformation, in part through its ability to regulate the epithelial-to-mesenchymal transition and metastasis. MTA1 is a component of the Mi-2/nucleosome remodeling and deacetylating (NURD) complex that contains both histone deacetylase and nucleosome remodeling activity. The data reported here demonstrate that endogenous c-MYC binds to the genomic MTA1 locus and recruits transcriptional coactivators. Most importantly, short hairpin RNA (shRNA)-mediated knockdown of MTA1 blocks the ability of c-MYC to transform mammalian cells. These data implicate MTA1 and the Mi-2/NURD complex as one of the first downstream targets of c-MYC function that are essential for the transformation potential of c-MYC.