scispace - formally typeset
Search or ask a question

Showing papers on "Small hairpin RNA published in 2010"


Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: Using a new method for the quantitative analysis of transcriptional components, the zinc-finger protein Zfp423 is identified as a factor enriched in preadipose versus non-preadipose fibroblasts and regulates Pparg expression through amplification of the BMP signalling pathway.
Abstract: The worldwide epidemic of obesity has increased the urgency to develop a deeper understanding of physiological systems related to energy balance and energy storage, including the mechanisms controlling the development of fat cells (adipocytes). The differentiation of committed preadipocytes to adipocytes is controlled by PPARgamma and several other transcription factors, but the molecular basis for preadipocyte determination is not understood. Using a new method for the quantitative analysis of transcriptional components, we identified the zinc-finger protein Zfp423 as a factor enriched in preadipose versus non-preadipose fibroblasts. Ectopic expression of Zfp423 in non-adipogenic NIH 3T3 fibroblasts robustly activates expression of Pparg in undifferentiated cells and permits cells to undergo adipocyte differentiation under permissive conditions. Short hairpin RNA (shRNA)-mediated reduction of Zfp423 expression in 3T3-L1 cells blunts preadipocyte Pparg expression and diminishes the ability of these cells to differentiate. Furthermore, both brown and white adipocyte differentiation is markedly impaired in Zfp423-deficient mouse embryos. Zfp423 regulates Pparg expression, in part, through amplification of the BMP signalling pathway, an effect dependent on the SMAD-binding capacity of Zfp423. This study identifies Zfp423 as a transcriptional regulator of preadipocyte determination.

442 citations


Journal ArticleDOI
23 Sep 2010-Oncogene
TL;DR: It is shown that the high-mobility group box 1 protein (HMGB1) is a redox-sensitive regulator of the balance between autophagy and apoptosis, representing a suitable target when coupled with conventional tumor treatments.
Abstract: The functional relationship and cross-regulation between autophagy and apoptosis is complex. In this study we show that the high-mobility group box 1 protein (HMGB1) is a redox-sensitive regulator of the balance between autophagy and apoptosis. In cancer cells, anticancer agents enhanced autophagy and apoptosis, as well as HMGB1 release. HMGB1 release may be a prosurvival signal for residual cells after various cytotoxic cancer treatments. Diminished HMGB1 by short hairpin RNA transfection or inhibition of HMGB1 release by ethyl pyruvate or other small molecules led predominantly to apoptosis and decreased autophagy in stressed cancer cells. In this setting, reducible HMGB1 binds to the receptor for advanced glycation end products (RAGEs), but not to Toll-like receptor 4, induces Beclin1-dependent autophagy and promotes tumor resistance to alkylators (melphalan), tubulin disrupting agents (paclitaxel), DNA crosslinkers (ultraviolet light) and DNA intercalators (oxaliplatin or adriamycin). On the contrary, oxidized HMGB1 increases the cytotoxicity of these agents and induces apoptosis mediated by the caspase-9/-3 intrinsic pathway. HMGB1 release, as well as its redox state, thus links autophagy and apoptosis, representing a suitable target when coupled with conventional tumor treatments.

413 citations


Journal ArticleDOI
TL;DR: This study provides the first direct experimental evidence that TA expression is necessary for the maintenance of MCV-positive MCC and that MCV is the infectious cause ofMCV- positive MCC.
Abstract: Merkel cell carcinoma (MCC) is the most aggressive skin cancer. Recently, it was demonstrated that human Merkel cell polyomavirus (MCV) is clonally integrated in ∼80% of MCC tumors. However, direct evidence for whether oncogenic viral proteins are needed for the maintenance of MCC cells is still missing. To address this question, we knocked down MCV T-antigen (TA) expression in MCV-positive MCC cell lines using three different short hairpin RNA (shRNA)-expressing vectors targeting exon 1 of the TAs. The MCC cell lines used include three newly generated MCV-infected cell lines and one MCV-negative cell line from MCC tumors. Notably, all MCV-positive MCC cell lines underwent growth arrest and/or cell death upon TA knockdown, whereas the proliferation of MCV-negative cell lines remained unaffected. Despite an increase in the number of annexin V-positive, 7-amino-actinomycin D (7-AAD)-negative cells upon TA knockdown, activation of caspases or changes in the expression and phosphorylation of Bcl-2 family members were not consistently detected after TA suppression. Our study provides the first direct experimental evidence that TA expression is necessary for the maintenance of MCV-positive MCC and that MCV is the infectious cause of MCV-positive MCC.

401 citations


Journal ArticleDOI
TL;DR: A step toward workable gene therapy is reported in the form of stable expression of a lentiviral vector encoding anti-HIV RNAs in blood stem cells transplanted into AIDS patients, and cells that survived for long periods of time in patients, although too scarce to cure or even improve their HIV infections.
Abstract: AIDS patients who develop lymphoma are often treated with transplanted hematopoietic progenitor cells. As a first step in developing a hematopoietic cell–based gene therapy treatment, four patients undergoing treatment with these transplanted cells were also given gene-modified peripheral blood–derived (CD34 + ) hematopoietic progenitor cells expressing three RNA-based anti-HIV moieties (tat/rev short hairpin RNA, TAR decoy, and CCR5 ribozyme). In vitro analysis of these gene-modified cells showed no differences in their hematopoietic potential compared with nontransduced cells. In vitro estimates of successful expression of the anti-HIV moieties were initially as high as 22% but declined to ~1% over 4 weeks of culture. Ethical study design required that patients be transplanted with both gene-modified and unmanipulated hematopoietic progenitor cells obtained from the patient by apheresis. Transfected cells were successfully engrafted in all four infused patients by day 11, and there were no unexpected infusion-related toxicities. Persistent vector expression in multiple cell lineages was observed at low levels for up to 24 months, as was expression of the introduced small interfering RNA and ribozyme. Therefore, we have demonstrated stable vector expression in human blood cells after transplantation of autologous gene-modified hematopoietic progenitor cells. These results support the development of an RNA-based cell therapy platform for HIV.

373 citations


Journal ArticleDOI
TL;DR: Targeting the Nrf2 pathway in prostate cancer cells may provide a novel strategy to enhance chemotherapy and radiotherapy responsiveness and ameliorate the growth and tumorigenicity, leading to improved clinical outcomes.
Abstract: Loss-of-function mutations in the nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor Kelch-like ECH-associated protein 1 (Keap1) result in increased Nrf2 activity in non-small cell lung cancer and confer therapeutic resistance. We detected point mutations in Keap1 gene, leading to nonconservative amino acid substitutions in prostate cancer cells. We found novel transcriptional and posttranscriptional mechanisms of Keap1 inactivation, such as promoter CpG island hypermethylation and aberrant splicing of Keap1, in DU-145 cells. Very low levels of Keap1 mRNA were detected in DU-145 cells, which significantly increased by treatment with DNA methyltransferase inhibitor 5-aza-deoxycytidine. The loss of Keap1 function led to an enhanced activity of Nrf2 and its downstream electrophile/drug detoxification pathway. Inhibition of Nrf2 expression in DU-145 cells by RNA interference attenuated the expression of glutathione, thioredoxin, and the drug efflux pathways involved in counteracting electrophiles, oxidative stress, and detoxification of a broad spectrum of drugs. DU-145 cells constitutively expressing Nrf2 short hairpin RNA had lower levels of total glutathione and higher levels of intracellular reactive oxygen species. Attenuation of Nrf2 function in DU-145 cells enhanced sensitivity to chemotherapeutic drugs and radiation-induced cell death. In addition, inhibition of Nrf2 greatly suppressed in vitro and in vivo tumor growth of DU-145 prostate cancer cells. Thus, targeting the Nrf2 pathway in prostate cancer cells may provide a novel strategy to enhance chemotherapy and radiotherapy responsiveness and ameliorate the growth and tumorigenicity, leading to improved clinical outcomes.

342 citations


Journal ArticleDOI
TL;DR: It is shown that miR-19 is sufficient to promote leukaemogenesis in Notch1-induced T-cell acute lymphoblastic leukaemia (T-ALL) in vivo and an unbiased, functional genomics approach reveals a coordinate clampdown on several regulators of phosphatidylinositol-3-OH kinase-related survival signals by theLeukaemogenic miR -19.
Abstract: MicroRNAs (miRNAs) have emerged as novel cancer genes. In particular, the miR-17-92 cluster, containing six individual miRNAs, is highly expressed in haematopoietic cancers and promotes lymphomagenesis in vivo. Clinical use of these findings hinges on isolating the oncogenic activity within the 17-92 cluster and defining its relevant target genes. Here we show that miR-19 is sufficient to promote leukaemogenesis in Notch1-induced T-cell acute lymphoblastic leukaemia (T-ALL) in vivo. In concord with the pathogenic importance of this interaction in T-ALL, we report a novel translocation that targets the 17-92 cluster and coincides with a second rearrangement that activates Notch1. To identify the miR-19 targets responsible for its oncogenic action, we conducted a large-scale short hairpin RNA screen for genes whose knockdown can phenocopy miR-19. Strikingly, the results of this screen were enriched for miR-19 target genes, and include Bim (Bcl2L11), AMP-activated kinase (Prkaa1) and the phosphatases Pten and PP2A (Ppp2r5e). Hence, an unbiased, functional genomics approach reveals a coordinate clampdown on several regulators of phosphatidylinositol-3-OH kinase-related survival signals by the leukaemogenic miR-19.

325 citations


Book ChapterDOI
TL;DR: These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects, and suggest suggestions for designing shRNA targets and controls.
Abstract: Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery.

297 citations


Journal ArticleDOI
TL;DR: Investigation of HCC as a VM and EMT model indicates that Twist1 induces HCC cell plasticity in VM cells more through the suppression of E‐cadherin expression and the induction of VE‐c cadherin up‐regulation than through the VM pattern in vivo and in a three‐dimensional in vitro system.

283 citations


Journal ArticleDOI
23 Sep 2010-Nature
TL;DR: It is indicated that small RNA molecules—from short-interfering RNAs to microRNAs—are capable of moving between cells and through the vasculature, and has implications for biological processes ranging from developmental patterning and stress responses to epigenetic inheritance.
Abstract: A key feature of RNA interference is its ability to spread from cell to cell. Such non-cell-autonomous gene silencing has been characterized extensively in both plants and animals, but the identity of the mobile silencing signal has remained elusive. Several recent studies now shed light on the identity of this signal in plants, and indicate that small RNA molecules-from short-interfering RNAs to microRNAs-are capable of moving between cells and through the vasculature. The movement of small, 21-24-nucleotide RNA species has implications for biological processes ranging from developmental patterning and stress responses to epigenetic inheritance.

257 citations


Journal ArticleDOI
TL;DR: In a murine model, dexamethasone inhibited the vasculogenic potential of stem cells derived from human infantile hemangioma.
Abstract: BACKGROUND Corticosteroids are commonly used to treat infantile hemangioma, but the mechanism of action of this therapy is unknown. We investigated the effect of corticosteroids in a previously described in vivo model of infantile hemangioma and in cultured hemangioma-derived cells. METHODS We tested hemangioma-derived stem cells for vasculogenic activity in vivo after implantation into immune-deficient (nude) mice. We studied dexamethasone treatment of both the cells before implantation and the mice after implantation. We also tested hemangioma-derived stem cells for expression of vascular endothelial growth factor A (VEGF-A) in vitro and studied the inhibition of VEGF-A expression, using short hairpin RNA (shRNA) in vivo and in vitro. RESULTS Systemic treatment with dexamethasone led to dose-dependent inhibition of tumor vasculogenesis in the murine model. Pretreatment of hemangioma-derived stem cells in vitro before implantation also inhibited vasculogenesis. Dexamethasone suppressed VEGF-A production by hemangioma-derived stem cells in vitro but not by hemangioma-derived endothelial cells or human umbilical-vein endothelial cells. Silencing VEGF-A in hemangioma-derived stem cells reduced vasculogenesis in vivo. VEGF-A was detected in hemangioma specimens in the proliferating phase but not in the involuting phase and was shown by immunostaining to reside outside of vessels. Corticosteroid treatment suppressed other proangiogenic factors in hemangioma-derived stem cells, including urokinase plasminogen activator receptor, interleukin-6, monocyte chemoattractant protein 1, and matrix metalloproteinase 1. CONCLUSIONS In a murine model, dexamethasone inhibited the vasculogenic potential of stem cells derived from human infantile hemangioma. The corticosteroid also inhibited the expression of VEGF-A by hemangioma-derived stem cells, and silencing of VEGF-A expression in these cells inhibited vasculogenesis in vivo.

234 citations


Journal ArticleDOI
Fengjie Guo1, Yalin Li1, Yan Liu1, Jiajia Wang1, Yuehui Li1, Guancheng Li1 
TL;DR: The data demonstrated that MALAT1 was involved in cervical cancer cell growth, cell cycle progression, and invasion through the regulation of gene expression, such as caspase-3, -8, Bax, Bcl-2, and BclxL, suggesting that MalAT1 could have important implications in cervicalcancer biology.
Abstract: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is suggested to be a long (∼7 kb) non-coding RNA. MALAT1 is overexpressed in many human carcinomas, but its function remains unknown. To investigate the role of MALAT1 in human cervical cancer progression, we designed and used short hairpin RNA to inhibit MALAT1 expression in CaSki cells and validated its effect on cell proliferation and invasion. Changes in gene expression were analyzed by reverse transcriptase – polymerase chain reaction. Our data demonstrated that MALAT1 was involved in cervical cancer cell growth, cell cycle progression, and invasion through the regulation of gene expression, such as caspase-3, -8, Bax, Bcl-2, and BclxL, suggesting that MALAT1 could have important implications in cervical cancer biology. Our findings illustrate the biological significance of MALAT1 in cervical cancer progression and provide novel evidence that MALAT1 may serve as a therapeutic target in the prevention of human cervical cancer.

Journal ArticleDOI
TL;DR: It is reported that the miRNAs encoded by murine gamma-herpesvirus 68 (MHV68) are also generated via atypical mechanisms, and are transcribed from RNA polymerase III promoters located within adjacent viral tRNA-like sequences.

Journal ArticleDOI
01 Nov 2010-PLOS ONE
TL;DR: Findings that miR-211 is a direct posttranscriptional regulator of KCNMA1 expression as well as the dependence of this miRNA's expression on MITF activity, establishes mi R-211 as an important regulatory agent in human melanoma.
Abstract: The immediate molecular mechanisms behind invasive melanoma are poorly understood. Recent studies implicate microRNAs (miRNAs) as important agents in melanoma and other cancers. To investigate the role of miRNAs in melanoma, we subjected human melanoma cell lines to miRNA expression profiling, and report a range of variations in several miRNAs. Specifically, compared with expression levels in melanocytes, levels of miR-211 were consistently reduced in all eight non-pigmented melanoma cell lines we examined; they were also reduced in 21 out of 30 distinct melanoma samples from patients, classified as primary in situ, regional metastatic, distant metastatic, and nodal metastatic. The levels of several predicted target mRNAs of miR-211 were reduced in melanoma cell lines that ectopically expressed miR-211. In vivo target cleavage assays confirmed one such target mRNA encoded by KCNMA1. Mutating the miR-211 binding site seed sequences at the KCNMA1 3′-UTR abolished target cleavage. KCNMA1 mRNA and protein expression levels varied inversely with miR-211 levels. Two different melanoma cell lines ectopically expressing miR-211 exhibited significant growth inhibition and reduced invasiveness compared with the respective parental melanoma cell lines. An shRNA against KCNMA1 mRNA also demonstrated similar effects on melanoma cells. miR-211 is encoded within the sixth intron of TRPM1, a candidate suppressor of melanoma metastasis. The transcription factor MITF, important for melanocyte development and function, is needed for high TRPM1 expression. MITF is also needed for miR-211 expression, suggesting that the tumor-suppressor activities of MITF and/or TRPM1 may at least partially be due to miR-211's negative post transcriptional effects on the KCNMA1 transcript. Given previous reports of high KCNMA1 levels in metastasizing melanoma, prostate cancer and glioma, our findings that miR-211 is a direct posttranscriptional regulator of KCNMA1 expression as well as the dependence of this miRNA's expression on MITF activity, establishes miR-211 as an important regulatory agent in human melanoma.

Journal ArticleDOI
TL;DR: It is shown that Xpo-5 overexpression enhanced shRNA efficiency in the liver of adult mice but increased hepatotoxicity, substantiate that abundant small RNAs can overload the endogenous RNAi pathway, and reveal possible strategies for reducing hepatot toxicity of short- and long-term clinical gene silencing in humans.
Abstract: shRNA overexpression from viral gene therapy vectors can trigger cytotoxicity leading to organ failure and lethality in mice and rats. This process likely involves saturation of endogenous cellular RNAi factors including exportin-5 (Xpo-5). Here, we have shown that Xpo-5 overexpression enhanced shRNA efficiency in the liver of adult mice but increased hepatotoxicity. We identified the 4 members of the human Argonaute (Ago) protein family as downstream factors involved in saturation of endogenous cellular RNAi, all of which were able to interact with shRNAs in cells and mice. In Ago/shRNA coexpression studies, Ago-2 (Slicer) was the primary rate-limiting determinant of both in vitro and in vivo RNAi efficacy, toxicity, and persistence. In adult mice, vector-based Ago-2/Xpo-5 coexpression enhanced U6-driven shRNA silencing of exogenous and endogenous hepatic targets, reduced hepatotoxicity, and extended RNAi stability by more than 3 months. Use of weaker RNA polymerase III promoters to minimize shRNA expression likewise alleviated in vivo toxicity and permitted greater than 95% persistent knockdown of hepatitis B virus and other transgenes in mouse liver for more than 1 year. Our studies substantiate that abundant small RNAs can overload the endogenous RNAi pathway and reveal possible strategies for reducing hepatotoxicity of short- and long-term clinical gene silencing in humans.

Journal ArticleDOI
TL;DR: Using ultrasound-guided in utero infections of fluorescently traceable lentiviruses carrying RNAi or Cre recombinase into mouse embryos, this work achieves epidermal-specific infection using small generic promoters of existing lentiviral short hairpin RNA libraries, thus enabling rapid assessment of gene function as well as complex genetic interactions in skin morphogenesis and disease in vivo.
Abstract: Using ultrasound-guided in utero infections of fluorescently traceable lentiviruses carrying RNAi or Cre recombinase into mouse embryos, we have demonstrated noninvasive, highly efficient selective transduction of surface epithelium, in which progenitors stably incorporate and propagate the desired genetic alterations. We achieved epidermal-specific infection using small generic promoters of existing lentiviral short hairpin RNA libraries, thus enabling rapid assessment of gene function as well as complex genetic interactions in skin morphogenesis and disease in vivo. We adapted this technology to devise a new quantitative method for ascertaining whether a gene confers a growth advantage or disadvantage in skin tumorigenesis. Using α1-catenin as a model, we uncover new insights into its role as a widely expressed tumor suppressor and reveal physiological interactions between Ctnna1 and the Hras1-Mapk3 and Trp53 gene pathways in regulating skin cell proliferation and apoptosis. Our study illustrates the strategy and its broad applicability for investigations of tissue morphogenesis, lineage specification and cancers.

Journal ArticleDOI
TL;DR: Nrf2-mediated regulation of ABCG2 expression maintains the SP fraction and confers chemoresistance, and its role in the multidrug resistance phenotype is examined.
Abstract: ATP-binding cassette, subfamily G, member 2 (ABCG2) is expressed in both normal and cancer cells and plays a crucial role in side population (SP) formation and efflux of xenobiotics and drugs. Nrf2, a redox-sensing transcription factor, on constitutive activation in non-small-cell lung cancer cells upregulates a wide spectrum of genes involved in redox balance, glutathione metabolism, and drug detoxification, which contribute to chemoresistance and tumorigenicity. This study examined the mechanism underlying Nrf2-dependent expression of ABCG2 and its role in the multidrug resistance phenotype. In silico analysis of the 5'-promoter flanking region of ABCG2 identified an antioxidant response element (ARE) at -431 to -420 bp. A detailed promoter analysis using luciferase reporter assays showed that ARE at -431 to -420 bp is critical for the Nrf2-mediated expression in lung cancer cells. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays revealed that Nrf2 interacts with the ABCG2 ARE element at -431 to -420 bp in vitro and in vivo. Disruption of Nrf2 expression in lung and prostate cancer cells, by short hairpin RNA, attenuated the expression of ABCG2 transcript and protein, and dramatically reduced the SP fraction in Nrf2-depleted cancer cells. Moreover, depleted levels of ABCG2 in these Nrf2 knockdown cells sensitized them to mitoxantrone and topotecan, two chemotherapy drugs detoxified mainly by ABCG2. As expected, overexpression of Nrf2 cDNA in lung epithelial cells led to an increase in ABCG2 expression and a 2-fold higher SP fraction. Thus, Nrf2-mediated regulation of ABCG2 expression maintains the SP fraction and confers chemoresistance.

Journal ArticleDOI
TL;DR: In this paper, C/EBPα was shown to be a regulator of SREBP1c expression in maturing adipocytes using shRNA (short hairpin RNA) and ChIP assays.
Abstract: The transcription factor SREBP1c (sterol-regulatory-element-binding protein 1c) is highly expressed in adipose tissue and plays a central role in several aspects of adipocyte development including the induction of PPARγ (peroxisome-proliferator-activated receptor γ), the generation of an endogenous PPARγ ligand and the expression of several genes critical for lipid biosynthesis Despite its significance, the regulation of SREBP1c expression during adipogenesis is not well characterized We have noted that in several models of adipogenesis, SREBP1c expression closely mimics that of known C/EBPβ (CCAAT/enhancer-binding protein β) targets Inhibition of C/EBP activity during adipogenesis by expressing either the dominant-negative C/EBPβ LIP (liver-enriched inhibitory protein) isoform, the co-repressor ETO (eight-twenty one/MTG8) or using siRNAs (small interfering RNAs) targeting either C/EBPβ or C/EBPδ significantly impaired early SREBP1c induction Furthermore, ChIP (chromatin immunoprecipitation) assays identified specific sequences in the SREBP1c promoter to which C/EBPβ and C/EBPδ bind in intact cells, demonstrating that these factors may directly regulate SREBP1c expression Using cells in which C/EBPα expression is inhibited using shRNA (short hairpin RNA) and ChIP assays we show that C/EBPα replaces C/EBPβ and C/EBPδ as a regulator of SREBP1c expression in maturing adipocytes These results provide novel insight into the induction of SREBP1c expression during adipogenesis Moreover, the findings of the present study identify an important additional mechanism via which the C/EBP transcription factors may control a network of gene expression regulating adipogenesis, lipogenesis and insulin sensitivity

Journal ArticleDOI
TL;DR: It is demonstrated that the F-box E3 ubiquitin ligase FBXl14 interacts with SNAIL1 and promotes its ubiquitylation and proteasome degradation independently of phosphorylation by GSK-3β, suggesting that additional E3 ligases participate in the control of SNAil1 protein stability.

Journal ArticleDOI
TL;DR: It is demonstrated that post-transcriptional regulation of Tsc-22 mediated through Ybx1, a miR-216a target, plays a key role in TGF-β-induced Col1a2 in MC related to the pathogenesis of diabetic nephropathy.

Journal ArticleDOI
TL;DR: H pylori is able to inhibit the tumor suppressor p53 and can also negatively regulate p53 by increasing ubiquitination and proteasomal degradation via activation of the serine/threonine kinase AKT1, which phosphorylates and activates the ubiquitin ligase HDM2.

Journal ArticleDOI
TL;DR: Results suggest that AP-mediated co-delivery of an anti-cancer drug and shRNA against Bcl-xL may widen the therapeutic window and allow for the selective destruction of cancer cells.

Journal ArticleDOI
TL;DR: Findings provide evidence that astrocyte elevated gene-1 contributes to glioma progression by enhancing MMP-9 transcription and, hence, tumor cell invasiveness, and underscore the importance of AEG-1 in gliomas development and progression.
Abstract: The poor prognosis of malignant gliomas is largely attributed to their highly invasive nature. The molecular mechanism underlying the invasiveness of glioma cells, however, remains to be elucidated. The present study found that astrocyte elevated gene-1 (AEG-1) was upregulated in human glioma cell lines and glioma tissues compared with normal astrocytes and brain tissues. AEG-1 was found to be upregulated in 265 of 296 (89.5%) glioma sections, and the AEG-1 expression level significantly correlated with clinicopathologic stages of gliomas. Ectopic expression or short hairpin RNA silencing of AEG-1 significantly enhanced or inhibited, respectively, the invasive ability of glioma cells. At the molecular level, we showed that upregulated AEG-1 in glioma cells interacted with matrix metalloproteinase-9 (MMP-9) promoter and transactivated MMP-9 expression, whereas knockdown of AEG-1 expression reduced the level of MMP-9. Two regions in MMP-9 promoter were found to be involved in the interaction with AEG-1. Suppression of endogenous MMP-9 abrogated the effects of AEG-1 on invasiveness. Consistent with these observations, immunostaining analysis revealed a significant correlation between the expressions of AEG-1 and MMP-9 in a cohort of clinical glioma samples. Moreover, intracranial xenografts of glioma cells engineered to express AEG-1 were highly invasive compared with the parental cells and expressed high level of MMP-9. Collectively, these findings provide evidence that AEG-1 contributes to glioma progression by enhancing MMP-9 transcription and, hence, tumor cell invasiveness, and underscore the importance of AEG-1 in glioma development and progression.

Journal ArticleDOI
TL;DR: It is reported that the Hsp90 cochaperone FKBP51 is upregulated in LAPC-4 AI tumors grown in castrated mice and a molecular mechanism by which FK BP51 regulates AR activity is described, which provides an attractive target for inhibiting AR activity in prostate cancer cells.
Abstract: Prostate cancer progression to the androgen-independent (AI) state involves acquisition of pathways that allow tumor growth under low-androgen conditions. We hypothesized that expression of molecular chaperones that modulate androgen binding to AR might be altered in prostate cancer and contribute to progression to the AI state. Here, we report that the Hsp90 cochaperone FKBP51 is upregulated in LAPC-4 AI tumors grown in castrated mice and describe a molecular mechanism by which FKBP51 regulates AR activity. Using recombinant proteins, we show that FKBP51 stimulates recruitment of the cochaperone p23 to the ATP-bound form of Hsp90, forming an FKBP51-Hsp90-p23 superchaperone complex. In cells, FKBP51 expression promotes superchaperone complex association with AR and increases the number of AR molecules that undergo androgen binding. FKBP51 stimulates androgen-dependent transcription and cell growth, and FKBP51 is part of a positive feedback loop that is regulated by AR and androgen. Finally, depleting FKBP51 levels by short hairpin RNA reduces the transcript levels of genes regulated by AR and androgen. Because the superchaperone complex plays a critical role in determining the ligand-binding competence and transcription function of AR, it provides an attractive target for inhibiting AR activity in prostate cancer cells.

Journal ArticleDOI
25 Feb 2010-Blood
TL;DR: It is demonstrated that lentiviral vector delivery of shRNA into human HPSCs could stably down-regulate CCR5 in systemic lymphoid organs in vivo.

Journal ArticleDOI
TL;DR: An in vivo RNA interference functional genetics approach to evaluate the role of 20 different conserved polarity factors and fate determinants in mouse hematopoietic stem cell (HSC) activity revealed three enhancers and one suppressor of HSC-derived reconstitution.

Journal ArticleDOI
14 Jun 2010-PLOS ONE
TL;DR: A new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors, acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation is described.
Abstract: Background Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrPC expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrPC expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo.

Journal ArticleDOI
TL;DR: A signaling network for CCM1, -2, and -3 in CCM pathology is defined, whereby loss of CCM 1, - 2, or -3 protein expression results in increased RhoA activity, with the activation of Rho kinase responsible for endothelial cell dysregulation.

Journal ArticleDOI
TL;DR: Results support the idea that increased expression of the COX-2 product PGE2 in the lung tumor microenvironment may initiate a mitogenic signaling cascade composed of EP4, βArrestin1, and c-Src which mediates cancer cell migration.
Abstract: Many human cancers express elevated levels of cyclooxygenase-2 (COX-2), an enzyme responsible for the biosynthesis of prostaglandins. Available clinical data establish the protective effect of COX-2 inhibition on human cancer progression. However, despite these encouraging outcomes, the appearance of unwanted side effects remains a major hurdle for the general application of COX-2 inhibitors as effective cancer drugs. Hence, a better understanding of the molecular signals downstream of COX-2 is needed for the elucidation of drug targets that may improve cancer therapy. Here, we show that the COX-2 product prostaglandin E(2) (PGE(2)) acts on cognate receptor EP4 to promote the migration of A549 lung cancer cells. Treatment with PGE(2) enhances tyrosine kinase c-Src activation, and blockade of c-Src activity represses the PGE(2)-mediated lung cancer cell migration. PGE(2) affects target cells by activating four receptors named EP1 to EP4. Use of EP subtype-selective ligand agonists suggested that EP4 mediates prostaglandin-induced A549 lung cancer cell migration, and this conclusion was confirmed using a short hairpin RNA approach to specifically knock down EP4 expression. Proximal EP4 effectors include heterotrimeric Gs and betaArrestin proteins. Knockdown of betaArrestin1 expression with shRNA significantly impaired the PGE(2)-induced c-Src activation and cell migration. Together, these results support the idea that increased expression of the COX-2 product PGE(2) in the lung tumor microenvironment may initiate a mitogenic signaling cascade composed of EP4, betaArrestin1, and c-Src which mediates cancer cell migration. Selective targeting of EP4 with a ligand antagonist may provide an efficient approach to better manage patients with advanced lung cancer.

Journal ArticleDOI
TL;DR: RNA-mediated silencing is discussed in light of this recent research, and the benefits and limitations conferred by these novel gene-silencing strategies are highlighted.

Journal ArticleDOI
TL;DR: E ectopically expressed hypoxia-inducible factor (HIF) 1alpha protein, an oxygen-sensitive subunit of HIF-1 that is a master factor for cellular response to Hypoxia, significantly increases galectin-1 expression in both messenger RNA and protein levels in all four colorectal cancer (CRC) cell lines tested.
Abstract: The expression of galectin-1, one of the most important lectins participating in the malignant tumor development, has been shown to be regulated by hypoxia, but its exact mechanism remains elusive. Here, we find that ectopically expressed hypoxia-inducible factor (HIF) 1alpha protein, an oxygen-sensitive subunit of HIF-1 that is a master factor for cellular response to hypoxia, significantly increases galectin-1 expression in both messenger RNA and protein levels in all four colorectal cancer (CRC) cell lines tested. However, hypoxia-induced galectin-1 expression cannot be seen in sentrin/SUMO-specific protease 1 homozygous-null mouse embryonic fibroblasts that fail to accumulate HIF-1alpha protein. Furthermore, silence of HIF-1alpha or HIF-1beta expression by specific short hairpin RNAs (shRNAs) antagonizes hypoxia-induced galectin-1 expression. All these results propose that galectin-1 is a direct target of transcriptional factor HIF-1. Applying luciferase reporter assay and chromatin immunoprecipitation, we identify that two hypoxia-responsive elements located at -441 to -423 bp upstream to transcriptional start site of galectin-1 gene are essential for HIF-1-mediated galectin-1 expression. Finally, the knockdown of galectin-1 by its specific shRNA can significantly reduce hypoxia-induced invasion and migration of CRC cell line, and the ectopic expression of galectin-1 can remarkably restore invasion and migration abilities of HIF-1alpha-knocked SW620 cells, proposing that galectin-1 mediates the HIF-1-induced migration and invasion of CRC cells during hypoxia. Taken together, our results shed new light for understanding mechanism for hypoxia/HIF-1-mediated migration/invasion of CRC cells.