scispace - formally typeset
Search or ask a question

Showing papers on "Small hairpin RNA published in 2018"


Journal ArticleDOI
05 Feb 2018-Oncogene
TL;DR: Results suggest that omental adipocytes reprogram tumour metabolism through the upregulation of CD36 in OvCa cells and targeting the stromal-tumour metabolic interface via CD36 inhibition may prove to be an effective treatment strategy against OvCa metastasis.
Abstract: Ovarian cancer (OvCa) is characterized by widespread and rapid metastasis in the peritoneal cavity. Visceral adipocytes promote this process by providing fatty acids (FAs) for tumour growth. However, the exact mechanism of FA transfer from adipocytes to cancer cells remains unknown. This study shows that OvCa cells co-cultured with primary human omental adipocytes express high levels of the FA receptor, CD36, in the plasma membrane, thereby facilitating exogenous FA uptake. Depriving OvCa cells of adipocyte-derived FAs using CD36 inhibitors and short hairpin RNA knockdown prevented development of the adipocyte-induced malignant phenotype. Specifically, inhibition of CD36 attenuated adipocyte-induced cholesterol and lipid droplet accumulation and reduced intracellular reactive oxygen species (ROS) content. Metabolic analysis suggested that CD36 plays an essential role in the bioenergetic adaptation of OvCa cells in the adipocyte-rich microenvironment and governs their metabolic plasticity. Furthermore, the absence of CD36 affected cellular processes that play a causal role in peritoneal dissemination, including adhesion, invasion, migration and anchorage independent growth. Intraperitoneal injection of CD36-deficient cells or treatment with an anti-CD36 monoclonal antibody reduced tumour burden in mouse xenografts. Moreover, a matched cohort of primary and metastatic human ovarian tumours showed upregulation of CD36 in the metastatic tissues, a finding confirmed in three public gene expression data sets. These results suggest that omental adipocytes reprogram tumour metabolism through the upregulation of CD36 in OvCa cells. Targeting the stromal-tumour metabolic interface via CD36 inhibition may prove to be an effective treatment strategy against OvCa metastasis.

286 citations


Journal ArticleDOI
TL;DR: The evidence generated by this study elucidates the role of lncRNA TUG1 as a miRNA sponge in CAVD, and sheds new light on lnc RNA-directed diagnostics and therapeutics inCAVD.
Abstract: Aims Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a vital role in cardiovascular physiology and pathology. Although the lncRNA TUG1 is implicated in atherosclerosis, its function in calcific aortic valve disease (CAVD) remains unknown. Methods and results In this study, we found that TUG1 was highly expressed in human aortic valves and primary valve interstitial cells (VICs). Moreover, TUG1 knockdown induced inhibition of osteoblast differentiation in CAVD both in vitro and in vivo. Mechanistically, silencing of TUG1 increased the expression of miR-204-5p and subsequently inhibited Runx2 expression at the post-transcriptional level. Importantly, TUG1 directly interacted with miR-204-5p and downregulation of miR-204-5p efficiently reversed the suppression of Runx2 induced by TUG1 short hairpin RNA (shRNA). Thus, TUG1 positively regulated the expression of Runx2, through sponging miR-204-5p, and promoted osteogenic differentiation in CAVD. Conclusion All together, the evidence generated by our study elucidates the role of lncRNA TUG1 as a miRNA sponge in CAVD, and sheds new light on lncRNA-directed diagnostics and therapeutics in CAVD.

178 citations


Journal ArticleDOI
TL;DR: The latest insights into the expression pattern, biological roles and mechanisms underlying the function and regulation of NEAT1 in tumors are highlighted, and its clinical implication as a new diagnostic biomarker and an attractive therapeutic target for cancers is focused on.
Abstract: The nuclear paraspeckle assembly transcript 1 (NEAT1, a long non-coding RNA) is frequently overexpressed in human tumors, and higher NEAT1 expression is correlated with worse survival in cancer patients. NEAT1 drives tumor initiation and progression by modulating the expression of genes involved in the regulation of tumor cell growth, migration, invasion, metastasis, epithelial-to-mesenchymal transition, stem cell-like phenotype, chemoresistance and radioresistance, indicating the potential for NEAT1 to be a novel diagnostic biomarker and therapeutic target. Mechanistically, NEAT1 functions as a scaffold RNA molecule by interacting with EZH2 (a subunit of the polycomb repressive complex) to influence the expression of downstream effectors of EZH2, it also acts as a microRNA (miRNA) sponge to suppress the interactions between miRNAs and target mRNAs, and affects the expression of miR-129 by promoting the DNA methylation of the miR-129 promoter region. Knockdown of NEAT1 via small interfering RNA or short hairpin RNA inhibits the malignant behavior of tumor cells. In this review, we highlight the latest insights into the expression pattern, biological roles and mechanisms underlying the function and regulation of NEAT1 in tumors, and especially focus on its clinical implication as a new diagnostic biomarker and an attractive therapeutic target for cancers.

164 citations


Journal ArticleDOI
TL;DR: A lncRNA is identified, LINC01503, which is regulated by a super enhancer and is expressed at significantly higher levels in esophageal and head and neck SCCs than in non-tumor tissues and might be developed as a biomarker of aggressive S CCs in patients.

157 citations


Journal ArticleDOI
TL;DR: A facile strategy is reported to construct a versatile DNA nanostructure as a co-delivery vector of RNA interference and chemodrugs to combat multidrug-resistant tumor (MCF-7R) in vitro and in-vivo.
Abstract: Multidrug resistance (MDR) is a major obstacle in the clinical treatment of cancer. Herein, a facile strategy is reported to construct a versatile DNA nanostructure as a co-delivery vector of RNA interference (RNAi) and chemodrugs to combat multidrug-resistant tumor (MCF-7R) in vitro and in vivo. In the tailored nanocarrier, two linear small hairpin RNA (shRNA) transcription templates targeting MDR-associated genes (gene of P-glycoprotein, a typical drug efflux pump; and gene of survivin, a representative anti-apoptotic protein) are precisely organized in the chemodrug (doxorubicin, DOX) pre-loaded DNA origami. With the incorporation of active targeting and controlled-release elements, these multifunctional DNA nanocarriers can successfully enter the target MCF-7R cells and synergistically inhibit tumor growth without apparent systemic toxicity. This tailored DNA nanoplatform, which combines RNAi therapy and chemotherapy, provides a new strategy for the treatment of multidrug-resistant tumors.

129 citations


Journal ArticleDOI
TL;DR: Liver stiffness to activate HSC differentiation into myofibroblasts, which required nuclear accumulation of p300, and RNA sequencing and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to identify HSC genes that changed expression levels in response to stiffness.

125 citations


Journal ArticleDOI
TL;DR: It is shown that a single-gene therapy vector that combines knockdown of the causative gene with its replacement by a resistant wild-type copy can prevent photoreceptor cell death and vision loss in a canine model of autosomal dominant retinitis pigmentosa.
Abstract: Inherited retinal degenerations are caused by mutations in >250 genes that affect photoreceptor cells or the retinal pigment epithelium and result in vision loss. For autosomal recessive and X-linked retinal degenerations, significant progress has been achieved in the field of gene therapy as evidenced by the growing number of clinical trials and the recent commercialization of the first gene therapy for a form of congenital blindness. However, despite significant efforts to develop a treatment for the most common form of autosomal dominant retinitis pigmentosa (adRP) caused by >150 mutations in the rhodopsin (RHO) gene, translation to the clinic has stalled. Here, we identified a highly efficient shRNA that targets human (and canine) RHO in a mutation-independent manner. In a single adeno-associated viral (AAV) vector we combined this shRNA with a human RHO replacement cDNA made resistant to RNA interference and tested this construct in a naturally occurring canine model of RHO-adRP. Subretinal vector injections led to nearly complete suppression of endogenous canine RHO RNA, while the human RHO replacement cDNA resulted in up to 30% of normal RHO protein levels. Noninvasive retinal imaging showed photoreceptors in treated areas were completely protected from retinal degeneration. Histopathology confirmed retention of normal photoreceptor structure and RHO expression in rod outer segments. Long-term (>8 mo) follow-up by retinal imaging and electroretinography indicated stable structural and functional preservation. The efficacy of this gene therapy in a clinically relevant large-animal model paves the way for treating patients with RHO-adRP.

108 citations


Journal ArticleDOI
TL;DR: In this study, significant upregulation of circFAT1 originating from exon 2 of the FAT1 gene in human osteosarcoma tissues and cell lines is observed and this data suggests a new therapeutic target for the treatment of osteosARcoma.
Abstract: There is an urgent need to identify new molecular targets for treatment of osteosarcoma. Circular RNAs are a class of endogenous RNAs that are extensively found in mammalian cells and exert critical functions in the regulation of gene expression, but in osteosarcoma the underlying molecular mechanism of circular RNAs remain poorly understood. Here we assessed the tumorigenesis properties of a circular RNA, circFAT1 in osteosarcoma. The effects of circFAT1/miR-375/YAP1 was evaluated on human osteosarcoma cells growth, apoptosis, migration, invasion and tumorigenesis. Signaling pathways were analyzed by western blotting, qRT-PCR, fluorescence in situ hybridization, chromogenic in situ hybridization,RNA Binding Protein Immunoprecipitation and immunofluorescence. The consequence of circFAT1 short hairpin RNA combined or not with miR-375 sponge was evaluated in mice bearing 143B xenografts on tumor growth. In this study, we observed significant upregulation of circFAT1 originating from exon 2 of the FAT1 gene in human osteosarcoma tissues and cell lines. Inhibition of circFAT1 effectively prevented the migration, invasion, and tumorigenesis of osteosarcoma cells in vitro and repressed osteosarcoma growth in vivo. Mechanistic studies revealed that circFAT1 contains a binding site for the microRNA-375 (miR-375) and can abundantly sponge miR-375 to upregulate the expression of Yes-associated protein 1. Moreover, inhibition of miR-375 reversed attenuation of cell proliferation, migration, and invasion, which was induced by circFAT1 knockdown, and therefore promoted tumorigenesis. Our findings demonstrate a novel function of circFAT1 in tumorigenesis and suggest a new therapeutic target for the treatment of osteosarcoma.

108 citations


Journal ArticleDOI
TL;DR: The sodium butyrate diet alleviated diarrhea symptoms and decreased intestinal permeability without affecting the growth of early weaned piglets.
Abstract: Background/aims Butyric acid plays an important role in maintaining intestinal health. Butyric acid has received special attention as a short-chain fatty acid, but its role in protecting the intestinal barrier is poorly characterized. Butyric acid not only provides energy for epithelial cells but also acts as a histone deacetylase inhibitor; it is also a natural ligand for G protein-coupled receptor 109A (GPR109A). A GPR109A analog was expressed in Sus scrofa and mediated the anti-inflammatory effects of beta-hydroxybutyric acid. This study investigated the effects of butyrate on growth performance, diarrhea symptoms, and tight junction protein levels in 21-day-old weaned piglets. We also studied the mechanism by which butyric acid regulates intestinal permeability. Methods Twenty-four piglets that had been weaned at an age of 21 days were divided randomly into 2 equal groups: basal diet group and sodium butyrate + basal diet group. Diarrhea rate, growth performance during 3 weeks of feeding on these diets were observed, the lactulose-mannitol ratio in urine were detected by High Performance Liquid Chromatography, the expression levels of tight junction proteins in the intestinal tract and related signaling molecules, such as GPR109A and Akt, in the colon were examined by quantitative real-time PCR or western blot analyses on day 21. Caco-2 cells were used as a colon cell model and cultured with or without sodium butyrate to assess the expression of tight junction proteins and the activation of related signaling molecules. GPR109A-short hairpin RNA (shRNA) and specific antagonists of Akt and ERK1/2 were used as signaling pathway inhibitors to elucidate the mechanism by which butyric acid regulates the expression of tight junction proteins and the colonic epithelial barrier. Results The sodium butyrate diet alleviated diarrhea symptoms and decreased intestinal permeability without affecting the growth of early weaned piglets. The expression levels of the tight junction proteins Claudin-3, Occludin, and zonula occludens 1 were up-regulated by sodium butyrate in the colon and Caco-2 cells. GPR109A knockdown using shRNA or blockade of the Akt signaling pathway in Caco-2 cells suppressed sodium butyrate-induced Claudin-3 expression. Conclusions Sodium butyrate acts on the Akt signaling pathway to facilitate Claudin-3 expression in the colon in a GPR109A-dependent manner.

97 citations


Journal ArticleDOI
TL;DR: Results supported the conclusion that silencing of HOTAIR decreased drug resistance of NSCLC cells to Crizotinib through inhibition of autophagy via suppressing phosphorylation of ULK1.

83 citations


Journal ArticleDOI
TL;DR: A H19‐miR130b pathway in regulating lipid metabolism and inflammation response in ox‐LDL‐treated Raw264.7 cells is indicated, providing new targets for AS treatment.

Journal ArticleDOI
TL;DR: It is demonstrated that PRMT9 is an oncogene that plays an important role in HCC invasion and metastasis through EMT by regulating Snail expression via activation of the PI3K/Akt/GSK‐3β/Snail signaling pathway.
Abstract: Protein arginine methyltransferases (PRMT) catalyze protein arginine methylation and play an important role in many biological processes. Aberrant PRMT expression in tumor cells has been documented in several common cancer types; however, its precise contribution to hepatocellular carcinoma (HCC) cell invasion and metastasis is not fully understood. In this study, we identified a new oncogene, PRMT9, whose overexpression strongly promotes HCC invasion and metastasis. PRMT9 expression was detected more frequently in HCC tissues than in adjacent noncancerous tissues. PRMT9 overexpression was significantly correlated with hepatitis B virus antigen (HBsAg) status, vascular invasion, poor tumor differentiation and advanced TNM stage. Patients with higher PRMT9 expression had a shorter survival time and higher recurrence rate. PRMT9 expression was an independent and significant risk factor for survival after curative resection. Functional studies demonstrated that PRMT9 increased HCC cell invasion and lung metastasis. Knocking down PRMT9 with short hairpin RNA (shRNA) inhibited HCC cell invasion. Further investigations found that PRMT9 increased cell migration and invasion through epithelial-mesenchymal transition (EMT) by regulating Snail expression via activation of the PI3K/Akt/GSK-3β/Snail signaling pathway. In clinical HCC samples, PRMT9 expression was positively associated with Snail expression and was negatively associated with E-cadherin expression. In conclusion, our study demonstrated that PRMT9 is an oncogene that plays an important role in HCC invasion and metastasis through EMT by regulating Snail expression via activation of the PI3K/Akt/GSK-3β/Snail signaling pathway. Thus, PRMT9 may serve as a candidate prognostic biomarker and a potential therapeutic target.

Journal ArticleDOI
TL;DR: In situ rolling circle transcription (RCT) is applied to synthesize short hairpin RNA (shRNA) on amphiphilic DNA–polylactide (PLA) micelles, and this nanomedicine platform is promising to codeliver anticancer nucleic acid therapeutics and chemotherapeutics.
Abstract: Nanomedicine has shown unprecedented potential for cancer theranostics. Nucleic acid (e.g., DNA and RNA) nanomedicines are of particular interest for combination therapy with chemotherapeutics. However, current nanotechnologies to construct such nucleic acid nanomedicines, which rely on chemical conjugation or physical complexation of nucleic acids with chemotherapeutics, have restrained their clinical translation due to limitations such as low drug loading efficiency and poor biostability. Herein, in situ rolling circle transcription (RCT) is applied to synthesize short hairpin RNA (shRNA) on amphiphilic DNA-polylactide (PLA) micelles. Core-shell PLA@poly-shRNA structures that codeliver a high payload of doxorubicin (Dox) and multidrug resistance protein 1 (MDR1) targeted shRNA for MDR breast cancer (BC) therapy are developed. DNA-PLA conjugates are first synthesized, which then self-assemble into amphiphilic DNA-PLA micelles; next, using the conjugated DNA as a promoter, poly-shRNA is synthesized on DNA-PLA micelles via RCT, generating PLA@poly-shRNA microflowers; and finally, microflowers are electrostatically condensed into nanoparticles using biocompatible and multifunctional poly(ethylene glycol)-grafted polypeptides (PPT-g-PEG). These PLA@poly-shRNA@PPT-g-PEG nanoparticles are efficiently delivered into MDR breast cancer cells and accumulated in xenograft tumors, leading to MDR1 silencing, intracellular Dox accumulation, potentiated apoptosis, and enhanced tumor therapeutic efficacy. Overall, this nanomedicine platform is promising to codeliver anticancer nucleic acid therapeutics and chemotherapeutics.

Journal ArticleDOI
TL;DR: It is determined that farnesyl diphosphate synthase (FDPS), a key enzyme in isoprenoid biosynthesis, plays an important role in maintaining glioblastoma stemness and that alendronate, a drug widely used to treat osteoporosis, can be repositioned to treat gliOBlastoma.
Abstract: Glioblastoma is a highly malignant tumor that easily acquires resistance to treatment. The stem-cell-like character (stemness) has been thought to be closely associated with the treatment resistance of glioblastoma cells. In this study, we determined that farnesyl diphosphate synthase (FDPS), a key enzyme in isoprenoid biosynthesis, plays an important role in maintaining glioblastoma stemness. A comparison of the mRNA expression in patient-derived glioblastoma sphere cells, which maintain stemness, and their differentiated counterparts, which lose stemness, via RNA sequencing showed that most of the altered genes were networked in the cholesterol biosynthesis pathway. We screened Federal Drug Administration (FDA)-approved drugs targeting specific enzymes in the cholesterol biosynthesis pathway for their ability to inhibit glioblastoma sphere formation. Inhibitors of FDPS, such as alendronate and zoledronate, significantly reduced the formation of glioblastoma spheres, and alendronate was effective at a lower molar concentration than zoledronate. Knockdown of FDPS using short hairpin RNA also completely inhibited the formation of secondary spheres. FDPS mRNA in patients with glioblastoma was associated with malignancy in three independent microarray data sets. RNA sequencing showed that alendronate treatment reduced the embryonic stem cell signature and activated development- and necrosis-related pathways in glioblastoma spheres. These results suggest that FDPS is important for the maintenance of glioblastoma stemness and that alendronate, a drug widely used to treat osteoporosis, can be repositioned to treat glioblastoma.

Journal ArticleDOI
TL;DR: The results suggest that ERβ promotesccRCC cell invasion by altering the ERβ/circATP2B1/miR-204-3p/FN1 axis and that therapeutic targeting of this newly identified pathway may better prevent ccRCC progression.
Abstract: Early studies have indicated that estrogen receptor beta (ERβ) can influence the progression of clear cell renal cell carcinoma (ccRCC). Here, we report the mechanistic details of ERβ-mediated progression of ccRCC. ERβ increased ccRCC cell invasion via suppression of circular RNA ATP2B1 (circATP2B1) expression by binding directly to the 5' promoter region of its host gene ATPase plasma membrane Ca2+ transporting 1 (ATP2B1). ERβ-suppressed circATP2B1 then led to reduced miR-204-3p, which increased fibronectin 1 (FN1) expression and enhanced ccRCC cell invasion. Targeting ERβ with shRNA suppressed ccRCC metastasis in a murine model of RCC; adding circATP2B1 shRNA partly reversed this effect. Consistent with these experimental results, ccRCC patient survival data from The Cancer Genome Atlas indicated that a patient with higher ERβ and FN1 expression had worse overall survival and a patient with higher miR-204-3p expression had significantly better overall survival. Together, these results suggest that ERβ promotes ccRCC cell invasion by altering the ERβ/circATP2B1/miR-204-3p/FN1 axis and that therapeutic targeting of this newly identified pathway may better prevent ccRCC progression.Significance: These results identify an ERβ/circATP2B1/miR-204-3p/FN1 signaling axis in RCC, suggesting ERβ and circular RNA ATP2B1 as prognostic biomarkers for this disease. Cancer Res; 78(10); 2550-63. ©2018 AACR.

Journal ArticleDOI
09 Mar 2018-Oncogene
TL;DR: Co-immunoprecipitation studies, in human glioma cells and tissues, show that Gαi1 forms a complex with multiple RTKs (EGFR, PDGFRα, and FGFR) and the adapter protein Gab1.
Abstract: We previously identified a pivotal role for G protein α inhibitory subunit 1 (Gαi1) in mediating PI3K-Akt signaling by receptor tyrosine kinases (RTKs). Here, we examined the expression and biological function of Gαi1 in human glioma. Gαi1 mRNA and protein expression were significantly upregulated in human glioma tissues, which correlated with downregulation of an anti-Gαi1 miRNA: microRNA-200a ("miR-200a"). Forced-expression of miR-200a in established (A172/U251MG lines) and primary (patient-derived) human glioma cells resulted in Gαi1 downregulation, Akt inactivation and proliferation inhibition. Reduction of Gαi1 expression by shRNA, dominant negative mutant interference, or complete Gαi1 depletion inhibited Akt activation and cell proliferation. Notably, miR-200a was unable to inhibit glioma cell proliferation when Gαi1 was silenced or mutated. Co-immunoprecipitation studies, in human glioma cells and tissues, show that Gαi1 forms a complex with multiple RTKs (EGFR, PDGFRα, and FGFR) and the adapter protein Gab1. In vivo, the growth of subcutaneous and orthotopic glioma xenografts in nude mice was largely inhibited by expression of Gαi1 shRNA or miRNA-200a. Collectively, miR-200a downregulation in human glioma leads to Gαi1 over-expression, Akt activation and glioma cell proliferation.


Journal ArticleDOI
TL;DR: The results suggest, although do not prove, that RosA can be a promising candidate for neuroprotective treatment of AD, that the antioxidant effects of RosA are mediated predominantly by Akt/GSK‐3&bgr;/Fyn pathway through increased activity of Nrf2.

Journal ArticleDOI
TL;DR: The data suggest that H19 decreased chemoresistance of glioma cells to TMZ by suppressing EMT via the inhibition of Wnt/β-Catenin pathway.
Abstract: Introduction Temozolomide (TMZ) is commonly used for glioma chemotherapy. However, TMZ resistance limits the therapeutic effect of TMZ in glioma treatment. LncRNA-H19 acts as an oncogenic LncRNA in some types of cancers and has been reported to be up-regulated in glioma. Materials and methods In our present study, we established TMZ-resistant glioma cells (U-251TMZ and M059JTMZ) to explore the effect of H19 on the chemoresistance of glioma cells. Results We observed that the expression of H19 was significantly increased in U-251TMZ and M059JTMZ cells. Knockdown of H19 expression using specific shRNA in U-251TMZ and M059JTMZ led to decreased half maximal inhibitory concentration (IC50) values for TMZ and increased cell apoptosis rates, indicating that the silencing of H19 decreased chemoresistance of glioma cells to TMZ. In addition, silencing of H19 suppressed epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin and decreasing the expression of mesenchymal marker Vimentin and ZEB1. Moreover, inducing EMT by TGF-β1 treatment led to increased IC50 values for TMZ and decreased cell apoptosis rates compared with TMZ+H19 shRNA group, suggesting that the induction of EMT counteracted the inhibitory effect of H19 shRNA on chemoresistance of glioma cells to TMZ. Furthermore, the reduced expression of H19 down-regulated the expression of β-Catenin and its downstream targets c-myc and Survivin in TMZ-treated glioma cells. Activation of Wnt/β-Catenin pathway by Licl treatment promoted EMT and enhanced chemoresistance to TMZ compared with TMZ+H19 shRNA group. Conclusion Taken together, our data suggest that H19 decreased chemoresistance of glioma cells to TMZ by suppressing EMT via the inhibition of Wnt/β-Catenin pathway. Our study might represent a novel therapeutic target for TMZ-resistant glioma.

Journal ArticleDOI
TL;DR: On-demand remotely manipulate RNA and drug release in real time through single delivery system to sequentially play their respective roles for optimizing and enhancing their synergistic antitumor effects to bring out optimized and significantly improved chemotherapeutic effects both in vitro and in vivo for MDR cancer treatment.
Abstract: Prerelease of RNA molecules than chemotherapeutic drugs with a sufficient interval is a vital prerequisite for RNA/drug co-delivery strategy to overcome multidrug resistance (MDR) of cancer cells, but how to precisely control their release at different time points is still a grand challenge up to now. This study aims to on-demand remotely manipulate RNA and drug release in real time through single delivery system to sequentially play their respective roles for optimizing and enhancing their synergistic antitumor effects. To this end, a photoresponsive mesoporous silica nanoparticle (PMSN) is fabricated as a co-delivery vehicle of P-glycoprotein (P-gp) short-hairpin RNA (shRNA) and photocaged prodrug of doxorubicin (DOX), by which the orthogonal and sequential release of shRNA and DOX can be achieved using an external light. In our design, the cationic poly[2-( N, N-dimethylaminoethyl)methacrylate] is introduced onto the PMSN surface through a light-sensitive coumarin ester derivative linker to adsorb P-gp shRNA, whereas the photocleavable o-nitrobenzyl ester derivative-caged DOX is loaded into the inner pores of the PMSN. The PMSN is found to be effectively internalized by MDR cancer cells, and the release of the shRNA and DOX is demonstrated to be independently regulated by 405 and 365 nm light irradiations due to selectively cleaved coumarin and o-nitrobenzyl ester, resulting in enhanced drug retention, and finally bring out optimized and significantly improved chemotherapeutic effects both in vitro and in vivo for MDR cancer treatment, which might hold extensive application prospects in MDR cancer treatment in future.

Journal ArticleDOI
TL;DR: Mechanistic insights are provided into the critical role played by Gαi1/3 proteins in VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis of proliferative diabetic retinopathy patients.
Abstract: VEGF binding to VEGFR2 leads to VEGFR2 endocytosis and downstream signaling activation to promote angiogenesis Methods: Using genetic strategies, we tested the requirement of α subunits of heterotrimeric G proteins (Gαi1/3) in the process Results: Gαi1/3 are located in the VEGFR2 endocytosis complex (VEGFR2-Ephrin-B2-Dab2-PAR-3), where they are required for VEGFR2 endocytosis and downstream signaling transduction Gαi1/3 knockdown, knockout or dominant negative mutation inhibited VEGF-induced VEGFR2 endocytosis, and downstream Akt-mTOR and Erk-MAPK activation Functional studies show that Gαi1/3 shRNA inhibited VEGF-induced proliferation, invasion, migration and vessel-like tube formation of HUVECs In vivo, Gαi1/3 shRNA lentivirus inhibited alkali burn-induced neovascularization in mouse cornea Further, oxygen-induced retinopathy (OIR)-induced retinal neovascularization was inhibited by intravitreal injection of Gαi1/3 shRNA lentivirus Moreover, in vivo angiogenesis by alkali burn and OIR was significantly attenuated in Gαi1/3 double knockout mice Significantly, Gαi1/3 proteins are upregulated in proliferative retinal tissues of proliferative diabetic retinopathy (PDR) patients Conclusion: These results provide mechanistic insights into the critical role played by Gαi1/3 proteins in VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis

Journal ArticleDOI
TL;DR: The results revealed that MALAT1 knockdown could significantly inhibit proliferation, migration, and tube formation in vitro, and promoted angiogenesis in BC, which may be related to the expression of miR‑145.
Abstract: Metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1) is a long non‑coding RNA (lncRNA) that has an oncogenic role in some types of cancers, uncluding breast cancer (BC). To investigate the role of MALAT1 in human BC progression, we detected MALAT1 expression levels based on tissue samples from 20 BC cases and 20 healthy controls and found MALAT1 expression levels to be significantly high (P<0.05). Then, we knocked down endogenous MALAT1 in MCF‑7 cells using MALAT1 short hairpin RNA (shRNA). The results revealed that MALAT1 knockdown could significantly inhibit proliferation, migration, and tube formation in vitro. In addition, miR‑145 expression inversely changed in BC tissue cases. Furthermore, knockdown of endogenous MALAT1 significantly increased miR‑145 levels in MCF‑7 cells. This finding indicated an interaction between MALAT1 and miR‑145. In addition, knockdown of MALAT1 significantly reduced the expression of vascular endothelial growth factor in MCF‑7 cells. This outcome revealed that MALAT1 promoted angiogenesis in BC, which may be related to the expression of miR‑145.

Journal ArticleDOI
TL;DR: The findings present a road map for targeting the newly identified lncRNA AFAP1-AS1 to suppress TSCC progression, and these results elucidate a novel potential therapeutic strategy for TSCC.
Abstract: Long non-coding RNA (lncRNA) actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is oriented in an antisense direction to the protein-coding gene AFAP1 in the opposite strand. Previous studies showed that lncRNA AFAP1-AS1 was upregulated and acted as an oncogene in a variety of tumors. However, the expression and biological functions of lncRNA AFAP1-AS1 in tongue squamous cell carcinoma (TSCC) are still unknown. The expression level of AFAP1-AS1 was measured in 103 pairs of human TSCC tissues and corresponding adjacent normal tongue mucous tissues. The correlation between AFAP1-AS1 and the clinicopathological features was evaluated using the chi-square test. The effects of AFAP1-AS1 on TSCC cells were determined via a CCK-8 assay, clone formation assay, flow cytometry, wound healing assay and transwell assay. Furthermore, the effect of AFAP1-AS1 knockdown on the activation of the Wnt/β-catenin signaling pathway was investigated. Finally, CAL-27 cells with AFAP1-AS1 knockdown were subcutaneously injected into nude mice to evaluate the effect of AFAP1-AS1 on tumor growth in vivo. In this study, we found that lncRNA AFAP1-AS1 was increased in TSCC tissues and that patients with high AFAP1-AS1 expression had a shorter overall survival. Short hairpin RNA (shRNA)-mediated AFAP1-AS1 knockdown significantly decreased the proliferation of TSCC cells. Furthermore, AFAP1-AS1 silencing partly inhibited cell migration and invasion. Inhibition of AFAP1-AS1 decreased the activity of the Wnt/β-catenin pathway and suppressed the expression of EMT-related genes (SLUG, SNAIL1, VIM, CADN, ZEB1, ZEB2, SMAD2 and TWIST1) in TSCC cells. In addition, CAL-27 cells with AFAP1-AS1 knockdown were injected into nude mice to investigate the effect of AFAP1-AS1 on tumorigenesis in vivo. Downregulation of AFAP1-AS1 suppressed tumor growth and inhibited the expression of EMT-related genes (SLUG, SNIAL1, VIM, ZEB1, NANOG, SMAD2, NESTIN and SOX2) in vivo. Taken together, our findings present a road map for targeting the newly identified lncRNA AFAP1-AS1 to suppress TSCC progression, and these results elucidate a novel potential therapeutic strategy for TSCC.

Journal ArticleDOI
TL;DR: A novel signaling axis involving MALAT1, Keap1 and Nrf2, which in turn protects HUVECs from oxidative injury, is identified.

Journal ArticleDOI
TL;DR: It is described that at least two HDAC6‐targeting miRNAs, miR‐433 and miR-22, are down‐regulated in CCA both in vitro and in vivo, and down‐ regulated Exportin‐5 impairs the nuclear export of miR­433 andMiR‐22 precursor forms.

Journal ArticleDOI
TL;DR: Results demonstrate that CD155 is involved in not only migration and invasion but also proliferation and survival abilities of colon cancer cells, suggesting thatCD155 is one of key molecules promoting the growth and metastasis of colorectal cancer.
Abstract: CD155, one of the nectin-like molecule family members, is involved in cell adhesion and motility. CD155 is overexpressed in several human cancers, but its role in proliferation and apoptosis of colorectal cancer remains unclear. We found that CD155 was up-regulated in colorectal cancer tissues. CD155 knockdown via shRNA lentiviruses inhibited colon cancers cell migration and invasion, with a reduction in the expression of FAK, Src and MMP-2. CD155 down-regulation also suppressed colon cancer cell proliferation, accompanied by changing expressions of some molecules related to cell cycle. Finally, CD155 knockdown increased the expression ratio between Bax and Bcl-2, resulting in a significant increase in colon cancer cell apoptosis. Taken together, these results demonstrate that CD155 is involved in not only migration and invasion but also proliferation and survival abilities of colon cancer cells, suggesting that CD155 is one of key molecules promoting the growth and metastasis of colorectal cancer.

Journal ArticleDOI
15 May 2018-Viruses
TL;DR: It is demonstrated that infecting human umbilical vein endothelial cells (HUVEC) with ZIKV triggers cellular autophagy of HUVEC, and inhibition of ZikV-induced Autophagy restrains viral replication.
Abstract: Autophagy is a common strategy for cell protection; however, some viruses can in turn adopt cellular autophagy to promote viral replication. Zika virus (ZIKV) is the pathogen that causes Zika viral disease, and it is a mosquito-borne virus. However, its pathogenesis, especially the interaction between ZIKV and target cells during the early stages of infection, is still unclear. In this study, we demonstrate that infecting human umbilical vein endothelial cells (HUVEC) with ZIKV triggers cellular autophagy. We observed both an increase in the conversion of LC3-I to LC3-II and increased accumulation of fluorescent cells with LC3 dots, which are considered to be the two key indicators of autophagy. The ratio of LC3-II/GAPDH in each group was significantly increased at different times after ZIKV infection at different MOIs, indicating that the production of lipidated LC3-II increased. Moreover, both the ratio of LC3-II/GAPDH and the expression of viral NS3 protein increased with increasing time of viral infection. The expression level of p62 decreased gradually from 12 h post-infection. Expression profile of double fluorescent protein labelling LC3 indicated that the autophagy induced by ZIKV infection was a complete process. We further investigated the role of autophagy in ZIKV replication. We demonstrated that either the treatment with inhibitors of autophagosomes formation or short hairpin RNA targeting the Beclin-1 gene, which is critical for the formation of autophagosomes, significantly reduced viral production. Taken together, our results indicate that ZIKV infection induces autophagy of HUVEC, and inhibition of ZIKV-induced autophagy restrains viral replication.

Journal ArticleDOI
TL;DR: It is found that highly expressed MIAT was an oncogenic lncRNA that promoted the growth and metastasis of CRC through miR-132/Derlin-1 axis.
Abstract: Recently, long non-coding RNA (lncRNA) MIAT has been demonstrated as an oncogenic gene in several types of cancer. However, the role and mechanism of MIAT in colorectal cancer (CRC) have not been investigated. Real-time PCR was used to measure MIAT expression in CRC tissues and cells. Small interfering RNA specific for MIAT (si-MIAT) was used to down-regulate MIAT expression in CRC cells. The interaction of MIAT and miR-132 was measured by RNA pull-down assay. The effect of si-MIAT on CRC cells apoptosis and metastasis were measured by flow cytometry assay, invasion and migration assay, respectively. In present study, we found that MIAT was highly expressed in CRC tissues and cells. MIAT knockdown inhibited proliferation, migration and invasion and enhanced apoptosis of CRC cells. Further, we demonstrated that MIAT acted as a competing endogenous RNA for miR-132, antagonized its functions, and resulted in the de-repression of its target gene Derlin-1, which acted as an oncogene in promoting growth and metastasis of CRC cells. In LOVO and SW480 cells with si-MIAT, miR-132 inhibitor resulted in an increase of cell proliferation, migration and invasion and a decrease of cell apoptosis, which was partially abolished by transfection of Derlin-1 shRNA. Our data indicated that highly expressed MIAT was an oncogenic lncRNA that promoted the growth and metastasis of CRC through miR-132/Derlin-1 axis.

Journal ArticleDOI
TL;DR: A germline copy number variation (CNV)-based genome-wide association study in populations of Chinese ancestry to search for germline CNVs that increase risk of hepatitis B virus-related hepatocellular carcinoma found SNORA18L5 at this location to promote HCC cell proliferation and tumor growth in mice.

Journal ArticleDOI
TL;DR: The results suggest that tumor expression of pseudogene derived lncRNA DUXAP8 plays an important role in pancreatic cancer progression and may serve as a candidate biomarker and represent a novel therapeutic target of Pancreatic cancer.
Abstract: Recent studies highlight pseudogene derived long non-coding RNAs (lncRNAs) as key regulators of cancer biology. However, few of them have been well characterized in pancreatic cancer. Here, we aimed to identify the association between pseudogene derived lncRNA DUXAP8 and growth of pancreatic cancer cells. We screened for pseudogene derived lncRNAs associated with human pancreatic cancer by comparative analysis of three independent datasets from GEO. Quantitative real-time reverse transcription polymerase chain reaction was used to assess the relative expression of DUXAP8 in pancreatic cancer tissues and cells. Loss-of-function approaches were used to investigate the potential functional roles of DUXAP8 in pancreatic cancer cell proliferation and apoptosis in vitro and in vivo. RNA immunoprecipitation, chromosome immunoprecipitation assay and rescue experiments were performed to analyze the association of DUXAP8 with target proteins and genes in pancreatic cancer cells. Pancreatic cancer tissues had significantly higher DUXAP8 levels than paired adjacent normal tissues. High DUXAP8 expression was associated with a larger tumor size, advanced pathological stage and shorter overall survival of pancreatic cancer patients. Moreover, silencing DUXAP8 expression by siRNA or shRNA inhibited pancreatic cancer cell proliferation and promoted apoptosis in vitro and in vivo. Mechanistic analyses indicated that DUXAP8 regulates PC cell proliferation partly through downregulation of tumor suppressor CDKN1A and KLF2 expression. Our results suggest that tumor expression of pseudogene derived lncRNA DUXAP8 plays an important role in pancreatic cancer progression. DUXAP8 may serve as a candidate biomarker and represent a novel therapeutic target of pancreatic cancer.