scispace - formally typeset
Search or ask a question
Topic

Small hairpin RNA

About: Small hairpin RNA is a research topic. Over the lifetime, 9279 publications have been published within this topic receiving 285471 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression is discussed, which is part of a Special Issue entitled MicroRNAs in viral gene regulation.

94 citations

Journal ArticleDOI
TL;DR: This work uncovers a critical function of DDX3 and provides a new role in m6 demethylation of RNA and a combination regimen of ketorolac salt with cisplatin deserves further clinical investigation in advanced OSCC.
Abstract: Platinum based drugs alone or in combination with 5FU and docetaxel are common regimen chemotherapeutics for the treatment of advanced OSCC. Chemoresistance is one of the major factors of treatment failure in OSCC. Human RNA helicase DDX3 plays an important role in cell proliferation, invasion, and metastasis in several neoplasms. The potential role of DDX3 in chemoresistance is yet to be explored. Enhanced cancer stem cells (CSCs) population significantly contributes to chemoresistance and recurrence. A recent study showed that m6A RNA regulates self-renewal and tumorigenesis property in cancer. In this study we found genetic (shRNA) or pharmacological (ketorolac salt) inhibition of DDX3 reduced CSC population by suppressing the expression of FOXM1 and NANOG. We also found that m6A demethylase ALKBH5 is directly regulated by DDX3 which leads to decreased m6A methylation in FOXM1 and NANOG nascent transcript that contribute to chemoresistance. Here, we found DDX3 expression was upregulated in both cisplatin-resistant OSCC lines and chemoresistant tumors when compared with their respective sensitive counterparts. In a patient-derived cell xenograft model of chemoresistant OSCC, ketorolac salt restores cisplatin-mediated cell death and facilitates a significant reduction of tumor burdens. Our work uncovers a critical function of DDX3 and provides a new role in m6 demethylation of RNA. A combination regimen of ketorolac salt with cisplatin deserves further clinical investigation in advanced OSCC.

94 citations

Journal ArticleDOI
TL;DR: The results demonstrate that silencing of the PINK1 gene does not induce a reliable mouse model for Parkinson's disease, but that technically the inducible U6 promoter is useful for conditional RNAi in vivo.
Abstract: Transgenic RNAi, an alternative to the gene knockout approach, can induce hypomorphic phenotypes that resemble those of the gene knockout in mice. Conditional transgenic RNAi is an attractive choice of method for reverse genetics in vivo because it can achieve temporal and spatial silencing of targeted genes. Pol III promoters such as U6 are widely used to drive the expression of RNAi transgenes in animals. Tested in transgenic mice, a Cre-loxP inducible U6 promoter drove the broad expression of an shRNA against the Pink1 gene whose loss-of-functional mutations cause one form of familial Parkinson's disease. The expression of the shRNA was tightly regulated and, when induced, silenced the Pink1 gene product by more than 95% in mouse brain. However, these mice did not develop dopaminergic neurodegeneration, suggesting that silencing of the Pink1 gene expression from embryo in mice is insufficient to cause similar biochemical or morphological changes that are observed in Parkinson's disease. The results demonstrate that silencing of the PINK1 gene does not induce a reliable mouse model for Parkinson's disease, but that technically the inducible U6 promoter is useful for conditional RNAi in vivo.

94 citations

Journal ArticleDOI
TL;DR: It is concluded that activation of MCP-1/CCR2 axis promotes PCa growth in bone and suggests that M CP-1 may be a target for PCa progression.
Abstract: Prostate cancer (PCa) frequently metastasizes to bone resulting in a mixture of osteolytic and osteoblastic lesions. We have previously reported that monocyte chemotactic protein-1 (MCP-1) is chemotactic for PCa cells, and its receptor, CCR2 expression, correlates with pathological stages. However, the role of MCP-1/CCR2 axis on PCa progression in bone remains unclear. We first evaluated the serum levels of MCP-1 in patients with bone metastases or localized PCa by enzyme-linked immunosorbent assay. We found that MCP-1 levels were elevated in patients with bone metastases compared to localized PCa. We further determined the effects of knockdown CCR2 or MCP-1 on PCa cell invasion and the tumor cell-induced osteoclast activity in vitro, respectively. PCa C4-2B and PC3 cells were transfected stably with either CCR2 short hairpin RNA (shRNA) or a scrambled RNA. CCR2 knockdown significantly diminished the MCP-1-induced PCa cell invasion. In addition, the MCP-1 production was knocked down by MCP-1 shRNA in C4-2B and PC3 cells. Conditioned media (CM) was collected and determined for the CM-induced osteoclast formation in vitro. MCP-1 knockdown significantly decreased the PCa CM-induced osteoclast formation. Finally, MCP-1 knockdown PC3 cells were implanted into the tibia of SCID mice for 4 weeks. Tumor volume was determined by histopathology and bone histomorphometry. MCP-1 knockdown diminished PC3 tumor growth in bone. We concluded that activation of MCP-1/CCR2 axis promotes PCa growth in bone. This study suggests that MCP-1 may be a target for PCa progression.

94 citations

Journal ArticleDOI
TL;DR: The results suggest that Kv1.3 may serve as a novel therapeutic target for lung adenocarcinoma therapy by reducing tumor volume when it was injected into the tumor tissues.

94 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
86% related
Cellular differentiation
90.9K papers, 6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023804
2022477
2021384
2020454
2019541
2018518