scispace - formally typeset
Search or ask a question
Topic

Small hairpin RNA

About: Small hairpin RNA is a research topic. Over the lifetime, 9279 publications have been published within this topic receiving 285471 citations.


Papers
More filters
Journal ArticleDOI
14 Aug 1992-Science
TL;DR: A pseudo--half-knot can be formed by binding an oligonucleotide asymmetrically to an RNA hairpin loop and this general binding motif may be used to disrupt the structure of regulatory RNA hairpins.
Abstract: A pseudo--half-knot can be formed by binding an oligonucleotide asymmetrically to an RNA hairpin loop. This binding motif was used to target the human immunodeficiency virus TAR element, an important viral RNA structure that is the receptor for Tat, the major viral transactivator protein. Oligonucleotides complementary to different halves of the TAR structure bound with greater affinity than molecules designed to bind symmetrically around the hairpin. The pseudo--half-knot--forming oligonucleotides altered the TAR structure so that specific recognition and binding of a Tat-derived peptide was disrupted. This general binding motif may be used to disrupt the structure of regulatory RNA hairpins.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that lentiviral vectors expressing siRNA directed to the reporter gene luciferase, when stably transduced into human cells without drug selection, are capable of protecting the cells from infection by a Lentiviral vector encoding humanized firefly larval gene as a reporter gene.
Abstract: RNA interference is an evolutionarily conserved process of gene silencing that in plants serves as a natural defense mechanism against exogenous viral agents. RNA interference is becoming an important tool for the study of biological processes through reverse genetics and has potential for therapeutic applications in humans; however, effective delivery is still a major issue. Small interfering RNA (siRNA) and short hairpin RNA (shRNA) have been introduced into cells by transfection of chemically synthesized and RNA expression via plasmid cassettes utilizing RNA polymerase III transcription. The employment of siRNA/shRNA for gene knockout requires an efficient stable transfection or transduction process. Here, we report the successful construction of lentiviral vectors to express shRNA stably in human cells. We demonstrate that lentiviral vectors expressing siRNA directed to the reporter gene luciferase, when stably transduced into human cells without drug selection, are capable of protecting the cells from infection by a lentiviral vector encoding humanized firefly luciferase as a reporter gene. We observed 16- to 43-fold reduction of gene expression in infected cells transduced with shRNA vectors relative to cells transduced with control vectors. This model system demonstrates the utility of lentiviral vectors to stably express shRNA as both a cellular gene knockout tool and as a means to inhibit exogenous infectious agents such as viruses in human cells.

92 citations

Journal ArticleDOI
TL;DR: Findings indicate that ACTA2 regulates c-MET and FAK expression in lung adenocarcinoma cells, which positively and selectively influence metastatic potential, and could be a promising prognostic biomarker and/or therapeutic target for metastatic lungAdenocARCinoma.
Abstract: Purpose: Metastatic relapse of primary lung cancer leads to therapeutic resistance and unfavorable clinical prognosis; therefore, identification of key molecules associated with metastatic conversion has significant clinical implications. We previously identified a link between early brain metastasis of lung adenocarcinoma and amplification of the α-smooth muscle actin ( ACTA2 ) gene. The aim of present study was to investigate the prognostic and functional significance of ACTA2 expression in cancer cells for the metastatic potential of lung adenocarcinomas. Experimental Design: ACTA2 expression was analyzed in tumor cells from 263 patients with primary lung adenocarcinomas by immunohistochemistry, and was correlated with clinicopathologic parameters. The expression of ACTA2 in human lung adenocarcinoma cells was modulated with short hairpin RNAs (shRNA) and siRNAs specifically targeting ACTA2 . Results: The patients with lung adenocarcinomas with high ACTA2 expression in tumor cells showed significantly enhanced distant metastasis and unfavorable prognosis. ACTA2 downregulation remarkably impaired in vitro migration, invasion, clonogenicity, and transendothelial penetration of lung adenocarcinoma cells without affecting proliferation. Consistent with the in vitro results, depletion of ACTA2 in human lung adenocarcinoma PC14PE6 cells significantly reduced their metastatic potential without altering their tumorigenic potential. Expression of c-MET and FAK in lung adenocarcinoma cells was also reduced by ACTA2 -targeting siRNAs and shRNAs, and was accompanied by a loss of mesenchymal characteristics. Conclusions: These findings indicate that ACTA2 regulates c-MET and FAK expression in lung adenocarcinoma cells, which positively and selectively influence metastatic potential. Therefore, ACTA2 could be a promising prognostic biomarker and/or therapeutic target for metastatic lung adenocarcinoma. Clin Cancer Res; 19(21); 5879–89. ©2013 AACR .

92 citations

Journal ArticleDOI
TL;DR: Gel electrophoresis and absorbance melting curves indicate that a synthesized RNA hairpin with a loop sequence complementary to the TAR loop sequence (CUGGGA) associates specifically with a 16-nucleotide TAR hairpin (Tar-16) to form a stable complex.
Abstract: Base-pair formation between two hairpin loops--a "kissing" complex--is an RNA-folding motif that links two elements of RNA secondary structure. It is also a unique protein recognition site involved in regulation of ColE1 plasmid DNA replication. The trans-activation response element (TAR), a hairpin and bulge at the 5' end of the untranslated leader region of the human immunodeficiency virus 1 mRNA, enhances the transcription of the virus and is necessary for viral replication. Gel electrophoresis and absorbance melting curves indicate that a synthesized RNA hairpin (Tar*-16) with a loop sequence complementary to the TAR loop sequence (CUGGGA) associates specifically with a 16-nucleotide TAR hairpin (Tar-16) to form a stable complex. RNase T1 probing indicates that the three guanines in the Tar-16 loop become inaccessible in the complex. NMR imino proton spectra reveal that 5 base pairs are formed between the two hairpin loops (Tar-16 and Tar*-16); only the adenine at the 3' terminus of the TAR loop does not form a base pair with the 5'-terminal uracil of the complementary loop. A 14-nucleotide hairpin [CCUA(UCCCAG)UAGG] with a loop sequence complementary to the TAR loop is conserved within the gag gene of human immunodeficiency virus 1. A synthesized RNA hairpin corresponding to this conserved sequence also binds to the Tar-16 hairpin with high affinity. It is possible that the same RNA loop-loop interaction occurs during the viral life cycle.

92 citations

Journal ArticleDOI
Yue Guo1, Limin Shu1, Chengyue Zhang1, Zheng-Yuan Su1, Ah-Ng Tony Kong1 
TL;DR: The results suggest that the inhibitory effect of CUR on anchorage-independent growth of HT29 cells could, at least in part, involve the epigenetic demethylation and up-regulation of DLEC1.

91 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
86% related
Cellular differentiation
90.9K papers, 6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023804
2022477
2021384
2020454
2019541
2018518