scispace - formally typeset
Search or ask a question
Topic

Small hairpin RNA

About: Small hairpin RNA is a research topic. Over the lifetime, 9279 publications have been published within this topic receiving 285471 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown by transient transfection that inhibition of expression of diverse strains of HIV-1 can be achieved by this ribozyme expressed in the proper vectors.
Abstract: Ribozymes have enormous potential as antiviral agents. We have previously reported that a hairpin ribozyme expressed under the control of the beta-actin promoter that cleaves human immunodeficiency virus type 1 (HIV-1) RNA in the leader sequence can inhibit HIV-1 (pHXB2gpt) expression. For such a ribozyme in a retroviral vector delivery system to be useful in gene therapy for the treatment of HIV-1 infection, it must be able to inhibit the expression of multiple HIV-1 strains. We have now cloned this ribozyme into various regular expression vectors (including retroviral vectors) by using various gene expression control strategies. Here we show by transient transfection that inhibition of expression of diverse strains of HIV-1 can be achieved by this ribozyme expressed in the proper vectors. These data further support the potential of this hairpin ribozyme as a therapeutic agent for HIV-1.

321 citations

Journal ArticleDOI
TL;DR: Repression of ncRNAs derived from the DLK1-DIO3 imprinted locus is associated with reduced neural lineage differentiation potential in hESCs.
Abstract: Pluripotent stem cells are increasingly used to build therapeutic models, including the transplantation of neural progenitors derived from human embryonic stem cells (hESCs). Recently, long non-coding RNAs (lncRNAs), including delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (DLK1-DIO3) imprinted locus-derived maternally expressed gene 3 (MEG3), were found to be expressed during neural development. The deregulation of these lncRNAs is associated with various neurological diseases. The imprinted locus DLK1-DIO3 encodes abundant non-coding RNAs (ncRNAs) that are regulated by differential methylation of the locus. We aim to study the correlation between the DLK1-DIO3-derived ncRNAs and the capacity of hESCs to differentiate into neural lineages. We classified hESC sublines into MEG3-ON and MEG3-OFF based on the expression levels of MEG3 and its downstream microRNAs as detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A cDNA microarray was used to analyze the gene expression profiles of hESCs. To investigate the capacity of neural differentiation in MEG3-ON and MEG3-OFF hESCs, we performed neural lineage differentiation followed by neural lineage marker expression and neurite formation analyses via qRT-PCR and immunocytochemistry, respectively. MEG3-knockdown via small interfering RNA (siRNA) and small hairpin RNA (shRNA) was used to investigate the potential causative effect of MEG3 in regulating neural lineage-related gene expression. DLK1-DIO3-derived ncRNAs were repressed in MEG3-OFF hESCs compared with those in the MEG3-ON hESCs. The transcriptome profile indicated that many genes related to nervous system development and neural-type tumors were differentially expressed in MEG3-OFF hESCs. Three independent MEG3-knockdown assays using different siRNA and shRNA constructs consistently resulted in downregulation of some neural lineage genes. Lower expression levels of stage-specific neural lineage markers and reduced neurite formation were observed in neural lineage-like cells derived from MEG3-OFF-associated hESCs compared with those in the MEG3-ON groups at the same time points after differentiation. Repression of ncRNAs derived from the DLK1-DIO3 imprinted locus is associated with reduced neural lineage differentiation potential in hESCs.

321 citations

Journal ArticleDOI
TL;DR: The ability of short hairpin RNA (shRNA) and CRISPR/Cas9 screens to identify essential genes in the human chronic myelogenous leukemia cell line K562 is compared.
Abstract: We compared the ability of short hairpin RNA (shRNA) and CRISPR/Cas9 screens to identify essential genes in the human chronic myelogenous leukemia cell line K562. We found that the precision of the two libraries in detecting essential genes was similar and that combining data from both screens improved performance. Notably, results from the two screens showed little correlation, which can be partially explained by the identification of distinct essential biological processes with each technology.

321 citations

Journal ArticleDOI
TL;DR: New RNA polymerase II expression vectors for RNAi are developed, designated SIBR vectors, based upon the non-coding RNA BIC, and it is found that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells.
Abstract: Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications.

315 citations

Journal ArticleDOI
TL;DR: This work extends the existing RegRNA platform by incorporating more comprehensive and updated data sources and analytical approaches into a new platform, RegRNA 2.0, developed for comprehensively identifying the functional RNA motifs and sites in an input RNA sequence.
Abstract: Background Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work extends it by incorporating more comprehensive and updated data sources and analytical approaches into a new platform.

311 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
86% related
Cellular differentiation
90.9K papers, 6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023804
2022477
2021384
2020454
2019541
2018518