scispace - formally typeset
Search or ask a question
Topic

Small hairpin RNA

About: Small hairpin RNA is a research topic. Over the lifetime, 9279 publications have been published within this topic receiving 285471 citations.


Papers
More filters
Journal ArticleDOI
06 Aug 2009-PLOS ONE
TL;DR: A collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers based on the Gateway technology are described.
Abstract: The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However, existing viral expression systems generally require different vector backbones for expression of cDNA, small hairpin RNA (shRNA) or microRNA (miRNA) and provide limited drug selection markers. Furthermore, viral backbones are often recombinogenic in bacteria, complicating the generation and maintenance of desired clones. Here, we describe a collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers. These vectors are based on the Gateway technology (Invitrogen) whereby the cDNA, shRNA or miRNA of interest is cloned into an Entry vector and then recombined into a Destination vector that carries the chosen viral backbone and drug selection marker. This recombination reaction generates the desired product with >95% efficiency and greatly reduces the frequency of unwanted recombination in bacteria. We generated Destination vectors for the production of both retroviruses and lentiviruses. Further, we characterized each vector for its viral titer production as well as its efficiency in expressing or depleting proteins of interest. We also generated multiple types of vectors for the production of fusion proteins and confirmed expression of each. We demonstrated the utility of these vectors in a variety of functional studies. First, we show that the FKBP12 Destabilization Domain system can be used to either express or deplete the protein of interest in mitotically-arrested cells. Also, we generate primary fibroblasts that can be induced to senesce in the presence or absence of DNA damage. Finally, we determined that both isoforms of the AT-Rich Interacting Domain 4B (ARID4B) protein could induce G1 arrest when overexpressed. As new technologies emerge, the vectors in this collection can be easily modified and adapted without the need for extensive recloning.

852 citations

Journal ArticleDOI
16 Oct 2008-Nature
TL;DR: In this paper, the authors reported the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas.
Abstract: Neuroblastoma, an embryonal tumour of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer. High-risk neuroblastomas are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germ line. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK complementary DNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed interleukin-3-dependent murine haematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to the small-molecule inhibitor of ALK, TAE684 (ref. 4). Furthermore, two human neuroblastoma cell lines harbouring the F1174L mutation were also sensitive to the inhibitor. Cytotoxicity was associated with increased amounts of apoptosis as measured by TdT-mediated dUTP nick end labelling (TUNEL). Short hairpin RNA (shRNA)-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumours and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.

821 citations

Journal ArticleDOI
TL;DR: Bacteriophage T7 lysozyme can reduce basal activity from an inducible gene for T7 RNA polymerase and allow relatively toxic genes to be established in the same cell under control of a T7 promoter.

801 citations

Journal ArticleDOI
TL;DR: The identification of DDX41, a member of the DEXDc family of helicases, as an intracellular DNA sensor in myeloid dendritic cells (mDCs) is reported, suggesting thatDDX41 is an additional DNA sensor that depends on STING to sense pathogenic DNA.
Abstract: The recognition of pathogenic DNA is important to the initiation of antiviral responses. Here we report the identification of DDX41, a member of the DEXDc family of helicases, as an intracellular DNA sensor in myeloid dendritic cells (mDCs). Knockdown of DDX41 expression by short hairpin RNA blocked the ability of mDCs to mount type I interferon and cytokine responses to DNA and DNA viruses. Overexpression of both DDX41 and the membrane-associated adaptor STING together had a synergistic effect in promoting Ifnb promoter activity. DDX41 bound both DNA and STING and localized together with STING in the cytosol. Knockdown of DDX41 expression blocked activation of the mitogen-activated protein kinase TBK1 and the transcription factors NF-κB and IRF3 by B-form DNA. Our results suggest that DDX41 is an additional DNA sensor that depends on STING to sense pathogenic DNA.

781 citations

Journal ArticleDOI
TL;DR: Genetic studies have expanded the biology of RNAi to cosuppression, transposon silencing, and the first hints of relationships to regulation of translation and development, as well as expanding the possible roles of RNA-dependent RNA polymerase (RdRp) in RNAi.
Abstract: In the few years since the discovery of RNA interference (RNAi; Fire et al. 1998), it has become clear that this process is ancient. RNAi, the oldest and most ubiquitous antiviral system, appeared before the divergence of plants and animals. Because aspects of RNAi, known as cosuppression, also control the expression of transposable elements and repetitive sequences (Ketting et al. 1999; Tabara et al. 1999), the interplay of RNAi and transposon activities have almost certainly shaped the structure of the genome of most organisms. Surprisingly, we are only now beginning to explore the molecular processes responsible for RNAi and to appreciate the breadth of its function in biology. Practical applications of this knowledge have allowed rapid surveys of gene functions (see Fraser et al. 2000 and Gönczey et al. 2000 for RNAi analysis of genes on chromosome I and III of Caenorhabditis elegans) and will possibly result in new therapeutic interventions. Genetic studies have expanded the biology of RNAi to cosuppression, transposon silencing, and the first hints of relationships to regulation of translation and development. The possible roles of RNA-dependent RNA polymerase (RdRp) in RNAi have been expanded. Many experiments indicate that dsRNA directs gene-specific methylation of DNA and, thus, regulation at the stage of transcription in plants. Cosuppression may involve regulation by polycomb complexes at the level of transcription in C. elegans and Drosophila. This article will review these topics and primarily summarize advances in the study of RNAi over the past year.

774 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
86% related
Cellular differentiation
90.9K papers, 6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023804
2022477
2021384
2020454
2019541
2018518