scispace - formally typeset
Search or ask a question
Topic

Small hairpin RNA

About: Small hairpin RNA is a research topic. Over the lifetime, 9279 publications have been published within this topic receiving 285471 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The lentiviral system offers a simple tool for reversible gene ablation in the rat and can be used for other species that cannot be manipulated by conventional recombination techniques.
Abstract: Currently, tools to generate loss-of-function mutations in rats are limited. Therefore, we have developed a lentiviral single-vector system for the temporal control of ubiquitous shRNA expression. Here, we report transgenic rats carrying an insulin receptor-specific shRNA transcribed from a regulatable promoter and identified by concomitant EGFP expression. In the absence of the inducer doxycycline (Dox), we observed no siRNA expression. However, Dox treatment at very low concentrations led to a rapid induction of the siRNA and ablation of INSR protein expression. As anticipated, blood glucose levels increased, whereas insulin signaling and glucose regulation were impaired. Importantly, this phenotype was reversible (i.e., discontinuation of Dox treatment led to INSR re-expression and remission of diabetes symptoms). The lentiviral system offers a simple tool for reversible gene ablation in the rat and can be used for other species that cannot be manipulated by conventional recombination techniques.

162 citations

Journal ArticleDOI
TL;DR: In this paper, C/EBPα was shown to be a regulator of SREBP1c expression in maturing adipocytes using shRNA (short hairpin RNA) and ChIP assays.
Abstract: The transcription factor SREBP1c (sterol-regulatory-element-binding protein 1c) is highly expressed in adipose tissue and plays a central role in several aspects of adipocyte development including the induction of PPARγ (peroxisome-proliferator-activated receptor γ), the generation of an endogenous PPARγ ligand and the expression of several genes critical for lipid biosynthesis Despite its significance, the regulation of SREBP1c expression during adipogenesis is not well characterized We have noted that in several models of adipogenesis, SREBP1c expression closely mimics that of known C/EBPβ (CCAAT/enhancer-binding protein β) targets Inhibition of C/EBP activity during adipogenesis by expressing either the dominant-negative C/EBPβ LIP (liver-enriched inhibitory protein) isoform, the co-repressor ETO (eight-twenty one/MTG8) or using siRNAs (small interfering RNAs) targeting either C/EBPβ or C/EBPδ significantly impaired early SREBP1c induction Furthermore, ChIP (chromatin immunoprecipitation) assays identified specific sequences in the SREBP1c promoter to which C/EBPβ and C/EBPδ bind in intact cells, demonstrating that these factors may directly regulate SREBP1c expression Using cells in which C/EBPα expression is inhibited using shRNA (short hairpin RNA) and ChIP assays we show that C/EBPα replaces C/EBPβ and C/EBPδ as a regulator of SREBP1c expression in maturing adipocytes These results provide novel insight into the induction of SREBP1c expression during adipogenesis Moreover, the findings of the present study identify an important additional mechanism via which the C/EBP transcription factors may control a network of gene expression regulating adipogenesis, lipogenesis and insulin sensitivity

162 citations

Journal ArticleDOI
TL;DR: It is proposed that siRNA incorporated into DOPC nanoparticles could be delivered systemically and used as a new modality for melanoma treatment and stably silence PAR-1 through the use of lentiviral short hairpin RNA.
Abstract: The thrombin receptor [protease-activated receptor-1 (PAR-1)] is overexpressed in highly metastatic melanoma cell lines and in patients with metastatic lesions. Activation of PAR-1 leads to cell signaling and up-regulation of genes involved in adhesion, invasion, and angiogenesis. Herein, we stably silence PAR-1 through the use of lentiviral short hairpin RNA and found significant decreases in both tumor growth (P < 0.01) and metastasis (P < 0.001) of highly metastatic melanoma cell lines in vivo. The use of viruses for therapy is not ideal as it can induce toxic immune responses and possible gene alterations following viral integration. Therefore, we also used systemic delivery of PAR-1 small interfering RNA (siRNA) incorporated into neutral liposomes [1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)] to decrease melanoma growth and metastasis in vivo. Significant decreases in tumor growth, weight, and metastatic lung colonies (P < 0.001 for all) were found in mice treated with PAR-1 siRNA-DOPC. The in vivo effects of PAR-1 on invasion and angiogenesis were analyzed via immunohistochemistry. Concomitant decreases in vascular endothelial growth factor, interleukin-8, and matrix metalloproteinase-2 expression levels, as well as decreased blood vessel density (CD31), were found in tumor samples from PAR-1 siRNA-treated mice, suggesting that PAR-1 is a regulator of melanoma cell growth and metastasis by affecting angiogenic and invasive factors. We propose that siRNA incorporated into DOPC nanoparticles could be delivered systemically and used as a new modality for melanoma treatment.

162 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the F-box E3 ubiquitin ligase FBXl14 interacts with SNAIL1 and promotes its ubiquitylation and proteasome degradation independently of phosphorylation by GSK-3β, suggesting that additional E3 ligases participate in the control of SNAil1 protein stability.

162 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Triad3A negatively regulates the RIG-I RNA sensing pathway through Lys48-linked, ubiquitin-mediated degradation of the tumor necrosis factor receptor-associated factor 3 (TRAF3) adapter.
Abstract: The primary role of the innate immune response is to limit the spread of infectious pathogens, with activation of Toll-like receptor (TLR) and RIG-like receptor (RLR) pathways resulting in a pro-inflammatory response required to combat infection. Limiting the activation of these signaling pathways is likewise essential to prevent tissue injury in the host. Triad3A is an E3 ubiquitin ligase that interacts with several components of TLR signaling and modulates TLR activity. In the present study, we demonstrate that Triad3A negatively regulates the RIG-I RNA sensing pathway through Lys48-linked, ubiquitin-mediated degradation of the tumor necrosis factor receptor-associated factor 3 (TRAF3) adapter. Triad3A was induced following dsRNA exposure or virus infection and decreased TRAF3 levels in a dose-dependent manner; moreover, Triad3A expression blocked IRF-3 activation by Ser-396 phosphorylation and inhibited the expression of type 1 interferon and antiviral genes. Lys48-linked ubiquitination of TRAF3 by Triad3A increased TRAF3 turnover, whereas reduction of Triad3A expression by stable shRNA expression correlated with an increase in TRAF3 protein expression and enhancement of the antiviral response following VSV or Sendai virus infection. Triad3A and TRAF3 physically interacted together, and TRAF3 residues Y440 and Q442—previously shown to be important for association with the MAVS adapter—were also critical for Triad3A. Point mutation of the TRAF-Interacting-Motif (TIM) of Triad3A abrogated its ability to interact with TRAF3 and modulate RIG-I signaling. TRAF3 appears to undergo sequential ubiquitin “immuno-editing” following virus infection that is crucial for regulation of RIG-I-dependent signaling to the antiviral response. Thus, Triad3A represents a versatile E3 ubiquitin ligase that negatively regulates RIG-like receptor signaling by targeting TRAF3 for degradation following RNA virus infection.

162 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
86% related
Cellular differentiation
90.9K papers, 6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023804
2022477
2021384
2020454
2019541
2018518