scispace - formally typeset
Search or ask a question
Topic

Smart camera

About: Smart camera is a research topic. Over the lifetime, 5571 publications have been published within this topic receiving 93054 citations. The topic is also known as: intelligent camera.


Papers
More filters
Book
25 May 2009
TL;DR: The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoringComprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications.
Abstract: The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoringComprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applicationsPresents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middlewareThis book is the definitive reference in multi-camera networks. It gives clear guidance on the conceptual and implementation issues involved in the design and operation of multi-camera networks, as well as presenting the state-of-the-art in hardware, algorithms and system development. The book is broad in scope, covering smart camera architectures, embedded processing, sensor fusion and middleware, calibration and topology, network-based detection and tracking, and applications in distributed and collaborative methods in camera networks. This book will be an ideal reference for university researchers, R&D engineers, computer engineers, and graduate students working in signal and video processing, computer vision, and sensor networks.Hamid Aghajan is a Professor of Electrical Engineering (consulting) at Stanford University. His research is on multi-camera networks for smart environments with application to smart homes, assisted living and well being, meeting rooms, and avatar-based communication and social interactions. He is Editor-in-Chief of Journal of Ambient Intelligence and Smart Environments, and was general chair of ACM/IEEE ICDSC 2008.Andrea Cavallaro is Reader (Associate Professor) at Queen Mary, University of London (QMUL). His research is on target tracking and audiovisual content analysis for advanced surveillance and multi-sensor systems. He serves as Associate Editor of the IEEE Signal Processing Magazine and the IEEE Trans. on Multimedia, and has been general chair of IEEE AVSS 2007, ACM/IEEE ICDSC 2009 and BMVC 2009. The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoringComprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applicationsPresents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware

232 citations

Patent
18 Jan 2010
TL;DR: In this article, a self-contained wireless camera (10) and a wireless camera system (25) having such a device and a base station (20) are presented on a display or monitor.
Abstract: A self-contained wireless camera ( 10 ) and a wireless camera system ( 25 ) having such a device and a base station ( 20 ). Video processing (e.g. video compression) circuitry ( 200, 210 ) of the camera device receives video signals from a camera ( 130 ) and provides processed video signals. These are transmitted over a shared radio channel. A radio receiver ( 101 ) receives processed (e.g. compressed) video signals from the base station or another camera device. Images from the camera or the base station are displayed in a selected manner on a display or monitor ( 140 ). The base station device ( 20 ) receives processed (e.g. compressed) video signals, stores them and retransmits them. A command signal is received by the radio receiver to modify operation in such a manner as to control bandwidth usage. Wireless camera devices can adjust their operation to accommodate other wireless camera devices. Different transport protocol modules 230 and 240 can be selected according to the application that the user selects for operation.

232 citations

Proceedings ArticleDOI
30 Sep 2008
TL;DR: This paper proposes and demonstrates a novel wireless camera network system, called CITRIC, that integrates a camera, a frequency-scalable CPU, 16MB FLASH, and 64MB RAM onto a single device, and connects with a standard sensor network mote to form a camera mote.
Abstract: In this paper, we propose and demonstrate a novel wireless camera network system, called CITRIC. The core component of this system is a new hardware platform that integrates a camera, a frequency-scalable (up to 624 MHz) CPU, 16MB FLASH, and 64MB RAM onto a single device. The device then connects with a standard sensor network mote to form a camera mote. The design enables in-network processing of images to reduce communication requirements, which has traditionally been high in existing camera networks with centralized processing. We also propose a back-end client/server architecture to provide a user interface to the system and support further centralized processing for higher-level applications. Our camera mote enables a wider variety of distributed pattern recognition applications than traditional platforms because it provides more computing power and tighter integration of physical components while still consuming relatively little power. Furthermore, the mote easily integrates with existing low-bandwidth sensor networks because it can communicate over the IEEE 802.15.4 protocol with other sensor network platforms. We demonstrate our system on three applications: image compression, target tracking, and camera localization.

232 citations

Journal ArticleDOI
TL;DR: The general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real world cameras, and a solution to this problem is obtained via binary optimization over a discrete problem space.

229 citations

Proceedings ArticleDOI
10 Dec 2007
TL;DR: A new approach for the extrinsic calibration of a camera with a 3D laser range finder, that can be done on the fly and brings 3D computer vision systems out of the laboratory and into practical use.
Abstract: In this paper, we describe a new approach for the extrinsic calibration of a camera with a 3D laser range finder, that can be done on the fly. This approach does not require any calibration object. Only few point correspondences are used, which are manually selected by the user from a scene viewed by the two sensors. The proposed method relies on a novel technique to visualize the range information obtained from a 3D laser scanner. This technique converts the visually ambiguous 3D range information into a 2D map where natural features of a scene are highlighted. We show that by enhancing the features the user can easily find the corresponding points of the camera image points. Therefore, visually identifying laser- camera correspondences becomes as easy as image pairing. Once point correspondences are given, extrinsic calibration is done using the well-known PnP algorithm followed by a noninear refinement process. We show the performance of our approach through experimental results. In these experiments, we will use an omnidirectional camera. The implication of this method is important because it brings 3D computer vision systems out of the laboratory and into practical use.

228 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
88% related
Feature extraction
111.8K papers, 2.1M citations
88% related
Image processing
229.9K papers, 3.5M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
87% related
Convolutional neural network
74.7K papers, 2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202262
202173
2020142
2019161
2018158