Topic
Smart environment
About: Smart environment is a research topic. Over the lifetime, 3884 publications have been published within this topic receiving 73916 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.
Abstract: Ubiquitous sensing enabled by Wireless Sensor Network (WSN) technologies cuts across many areas of modern day living. This offers the ability to measure, infer and understand environmental indicators, from delicate ecologies and natural resources to urban environments. The proliferation of these devices in a communicating-actuating network creates the Internet of Things (IoT), wherein sensors and actuators blend seamlessly with the environment around us, and the information is shared across platforms in order to develop a common operating picture (COP). Fueled by the recent adaptation of a variety of enabling wireless technologies such as RFID tags and embedded sensor and actuator nodes, the IoT has stepped out of its infancy and is the next revolutionary technology in transforming the Internet into a fully integrated Future Internet. As we move from www (static pages web) to web2 (social networking web) to web3 (ubiquitous computing web), the need for data-on-demand using sophisticated intuitive queries increases significantly. This paper presents a Cloud centric vision for worldwide implementation of Internet of Things. The key enabling technologies and application domains that are likely to drive IoT research in the near future are discussed. A Cloud implementation using Aneka, which is based on interaction of private and public Clouds is presented. We conclude our IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.
9,593 citations
TL;DR: A holistic framework which incorporates different components from IoT architectures/frameworks proposed in the literature, in order to efficiently integrate smart home objects in a cloud-centric IoT based solution is proposed.
Abstract: Although Internet of Things (IoT) brings significant advantages over traditional communication technologies for smart grid and smart home applications, these implementations are still very rare. Relying on a comprehensive literature review, this paper aims to contribute towards narrowing the gap between the existing state-of-the-art smart home applications and the prospect of their integration into an IoT enabled environment. We propose a holistic framework which incorporates different components from IoT architectures/frameworks proposed in the literature, in order to efficiently integrate smart home objects in a cloud-centric IoT based solution. We identify a smart home management model for the proposed framework and the main tasks that should be performed at each level. We additionally discuss practical design challenges with emphasis on data processing, as well as smart home communication protocols and their interoperability. We believe that the holistic framework ascertained in this paper can be used as a solid base for the future developers of Internet of Things based smart home solutions.
1,003 citations
TL;DR: The University of Florida's Mobile and Pervasive Computing Laboratory is developing programmable pervasive spaces in which a smart space exists as both a runtime environment and a software library.
Abstract: Research groups in both academia and industry have developed prototype systems to demonstrate the benefits of pervasive computing in various application domains. Unfortunately, many first-generation pervasive computing systems lack the ability to evolve as new technologies emerge or as an application domain matures. To address this limitation, the University of Florida's Mobile and Pervasive Computing Laboratory is developing programmable pervasive spaces in which a smart space exists as both a runtime environment and a software library. Service discovery and gateway protocols automatically integrate system components using generic middleware that maintains a service definition for each sensor and actuator in the space. The Gator Tech Smart House in Gainesville, Florida, is the culmination of more than five years of research in pervasive and mobile computing. The project's goal is to create assistive environments such as homes that can sense themselves and their residents and enact mappings between the physical world and remote monitoring and intervention services.
931 citations
TL;DR: This article addresses the challenges and opportunities of instrumenting the physical world with pervasive networks of sensor-rich, embedded computation with a taxonomy of emerging systems and outlines the enabling technological developments.
Abstract: This article addresses the challenges and opportunities of instrumenting the physical world with pervasive networks of sensor-rich, embedded computation. The authors present a taxonomy of emerging systems and outline the enabling technological developments.
907 citations
TL;DR: The state-of-the-art communication technologies and smart-based applications used within the context of smart cities are described and a future business model of big data for smart cities is proposed, and the business and technological research challenges are identified.
Abstract: We provide a vision of big data analytics to support smart cities.We proposed future business model with the aim of managing big data for smart city.We identify and discuss business and technological research challenges.We provide a description of existing communication technologies used in smart cities. The expansion of big data and the evolution of Internet of Things (IoT) technologies have played an important role in the feasibility of smart city initiatives. Big data offer the potential for cities to obtain valuable insights from a large amount of data collected through various sources, and the IoT allows the integration of sensors, radio-frequency identification, and Bluetooth in the real-world environment using highly networked services. The combination of the IoT and big data is an unexplored research area that has brought new and interesting challenges for achieving the goal of future smart cities. These new challenges focus primarily on problems related to business and technology that enable cities to actualize the vision, principles, and requirements of the applications of smart cities by realizing the main smart environment characteristics. In this paper, we describe the state-of-the-art communication technologies and smart-based applications used within the context of smart cities. The visions of big data analytics to support smart cities are discussed by focusing on how big data can fundamentally change urban populations at different levels. Moreover, a future business model of big data for smart cities is proposed, and the business and technological research challenges are identified. This study can serve as a benchmark for researchers and industries for the future progress and development of smart cities in the context of big data.
774 citations