scispace - formally typeset
Search or ask a question

Showing papers on "Smart grid published in 2010"


Journal ArticleDOI
TL;DR: The electrical power industry is undergoing rapid change as discussed by the authors, and the major drivers that will determine the speed at which such transformations will occur will be the rising cost of energy, the mass electrification of everyday life, and climate change.
Abstract: Exciting yet challenging times lie ahead. The electrical power industry is undergoing rapid change. The rising cost of energy, the mass electrification of everyday life, and climate change are the major drivers that will determine the speed at which such transformations will occur. Regardless of how quickly various utilities embrace smart grid concepts, technologies, and systems, they all agree onthe inevitability of this massive transformation. It is a move that will not only affect their business processes but also their organization and technologies.

2,906 citations


Journal ArticleDOI
TL;DR: This paper presents an autonomous and distributed demand-side energy management system among users that takes advantage of a two-way digital communication infrastructure which is envisioned in the future smart grid.
Abstract: Most of the existing demand-side management programs focus primarily on the interactions between a utility company and its customers/users. In this paper, we present an autonomous and distributed demand-side energy management system among users that takes advantage of a two-way digital communication infrastructure which is envisioned in the future smart grid. We use game theory and formulate an energy consumption scheduling game, where the players are the users and their strategies are the daily schedules of their household appliances and loads. It is assumed that the utility company can adopt adequate pricing tariffs that differentiate the energy usage in time and level. We show that for a common scenario, with a single utility company serving multiple customers, the global optimal performance in terms of minimizing the energy costs is achieved at the Nash equilibrium of the formulated energy consumption scheduling game. The proposed distributed demand-side energy management strategy requires each user to simply apply its best response strategy to the current total load and tariffs in the power distribution system. The users can maintain privacy and do not need to reveal the details on their energy consumption schedules to other users. We also show that users will have the incentives to participate in the energy consumption scheduling game and subscribing to such services. Simulation results confirm that the proposed approach can reduce the peak-to-average ratio of the total energy demand, the total energy costs, as well as each user's individual daily electricity charges.

2,715 citations


Journal ArticleDOI
TL;DR: A comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault is presented.
Abstract: The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as a promising technology that can enhance various aspects of today's electric power systems, including generation, delivery, and utilization, making them a vital component of the next-generation electric power system, the smart grid. However, harsh and complex electric-power-system environments pose great challenges in the reliability of WSN communications in smart-grid applications. This paper starts with an overview of the application of WSNs for electric power systems along with their opportunities and challenges and opens up future work in many unexploited research areas in diverse smart-grid applications. Then, it presents a comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault. Field tests have been performed on IEEE 802.15.4-compliant wireless sensor nodes in real-world power delivery and distribution systems to measure background noise, channel characteristics, and attenuation in the 2.4-GHz frequency band. Overall, the empirical measurements and experimental results provide valuable insights about IEEE 802.15.4-compliant sensor network platforms and guide design decisions and tradeoffs for WSN-based smart-grid applications.

1,255 citations


Journal ArticleDOI
TL;DR: This work proposes an aggregator that makes efficient use of the distributed power of electric vehicles to produce the desired grid-scale power and applies the dynamic programming algorithm to compute the optimal charging control for each vehicle.
Abstract: For vehicle-to-grid (V2G) frequency regulation services, we propose an aggregator that makes efficient use of the distributed power of electric vehicles to produce the desired grid-scale power. The cost arising from the battery charging and the revenue obtained by providing the regulation are investigated and represented mathematically. Some design considerations of the aggregator are also discussed together with practical constraints such as the energy restriction of the batteries. The cost function with constraints enables us to construct an optimization problem. Based on the developed optimization problem, we apply the dynamic programming algorithm to compute the optimal charging control for each vehicle. Finally, simulations are provided to illustrate the optimality of the proposed charging control strategy with variations of parameters.

1,045 citations


Proceedings ArticleDOI
04 Nov 2010
TL;DR: This paper analytically model the subscribers' preferences and their energy consumption patterns in form of carefully selected utility functions based on concepts from microeconomics and proposes a distributed algorithm which automatically manages the interactions among the ECC units at the smart meters and the energy provider.
Abstract: In this paper, we consider a smart power infrastructure, where several subscribers share a common energy source. Each subscriber is equipped with an energy consumption controller (ECC) unit as part of its smart meter. Each smart meter is connected to not only the power grid but also a communication infrastructure such as a local area network. This allows two-way communication among smart meters. Considering the importance of energy pricing as an essential tool to develop efficient demand side management strategies, we propose a novel real-time pricing algorithm for the future smart grid. We focus on the interactions between the smart meters and the energy provider through the exchange of control messages which contain subscribers' energy consumption and the real-time price information. First, we analytically model the subscribers' preferences and their energy consumption patterns in form of carefully selected utility functions based on concepts from microeconomics. Second, we propose a distributed algorithm which automatically manages the interactions among the ECC units at the smart meters and the energy provider. The algorithm finds the optimal energy consumption levels for each subscriber to maximize the aggregate utility of all subscribers in the system in a fair and efficient fashion. Finally, we show that the energy provider can encourage some desirable consumption patterns among the subscribers by means of the proposed real-time pricing interactions. Simulation results confirm that the proposed distributed algorithm can potentially benefit both subscribers and the energy provider.

995 citations


Journal ArticleDOI
TL;DR: An optimization model to adjust the hourly load level of a given consumer in response to hourly electricity prices is described, which materializes into a simple linear programming algorithm that can be easily integrated in the Energy Management System of a household or a small business.
Abstract: This paper describes an optimization model to adjust the hourly load level of a given consumer in response to hourly electricity prices. The objective of the model is to maximize the utility of the consumer subject to a minimum daily energy-consumption level, maximum and minimum hourly load levels, and ramping limits on such load levels. Price uncertainty is modeled through robust optimization techniques. The model materializes into a simple linear programming algorithm that can be easily integrated in the Energy Management System of a household or a small business. A simple bidirectional communication device between the power supplier and the consumer enables the implementation of the proposed model. Numerical simulations illustrating the interest of the proposed model are provided.

946 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss about integrating renewable energy sources into the smart power grid through industrial electronics, including photovoltaic power, wind energy conversion, hybrid energy systems, and tidal energy conversion.
Abstract: This paper discusses about integrating renewable energy sources into the smart power grid through industrial electronics. This paper discusses photovoltaic power, wind energy conversion, hybrid energy systems, and tidal energy conversion.

933 citations


Journal ArticleDOI
TL;DR: This paper critically reviews the reliability impacts of major smart grid resources such as renewables, demand response, and storage and observes that an ideal mix of these resources leads to a flatter net demand that eventually accentuates reliability challenges further.
Abstract: Increasing complexity of power grids, growing demand, and requirement for greater reliability, security and efficiency as well as environmental and energy sustainability concerns continue to highlight the need for a quantum leap in harnessing communication and information technologies. This leap toward a ?smarter? grid is widely referred to as ?smart grid.? A framework for cohesive integration of these technologies facilitates convergence of acutely needed standards, and implementation of necessary analytical capabilities. This paper critically reviews the reliability impacts of major smart grid resources such as renewables, demand response, and storage. We observe that an ideal mix of these resources leads to a flatter net demand that eventually accentuates reliability challenges further. A gridwide IT architectural framework is presented to meet these challenges while facilitating modern cybersecurity measures. This architecture supports a multitude of geographically and temporally coordinated hierarchical monitoring and control actions over time scales from milliseconds and up.

907 citations


Journal ArticleDOI
TL;DR: A unique vision for the future of smart transmission grids is presented in which their major features are identified and each smart transmission grid is regarded as an integrated system that functionally consists of three interactive, smart components.
Abstract: A modern power grid needs to become smarter in order to provide an affordable, reliable, and sustainable supply of electricity. For these reasons, considerable activity has been carried out in the United States and Europe to formulate and promote a vision for the development of future smart power grids. However, the majority of these activities emphasized only the distribution grid and demand side leaving the big picture of the transmission grid in the context of smart grids unclear. This paper presents a unique vision for the future of smart transmission grids in which their major features are identified. In this vision, each smart transmission grid is regarded as an integrated system that functionally consists of three interactive, smart components, i.e., smart control centers, smart transmission networks, and smart substations. The features and functions of each of the three functional components, as well as the enabling technologies to achieve these features and functions, are discussed in detail in the paper.

894 citations


Journal ArticleDOI
TL;DR: The main industry drivers of smart grid and the different facets of DER under the smart grid paradigm are explored and the existing and evolving programs at different ISOs/RTOs and the product markets they can participate in are summarized.
Abstract: Demand response (DR), distributed generation (DG), and distributed energy storage (DES) are important ingredients of the emerging smart grid paradigm. For ease of reference we refer to these resources collectively as distributed energy resources (DER). Although much of the DER emerging under smart grid are targeted at the distribution level, DER, and more specifically DR resources, are considered important elements for reliable and economic operation of the transmission system and the wholesale markets. In fact, viewed from transmission and wholesale operations, sometimes the term ?virtual power plant? is used to refer to these resources. In the context of energy and ancillary service markets facilitated by the independent system operators (ISOs)/regional transmission organizations (RTOs), the market products DER/DR can offer may include energy, ancillary services, and/or capacity, depending on the ISO/RTO market design and applicable operational standards. In this paper we first explore the main industry drivers of smart grid and the different facets of DER under the smart grid paradigm. We then concentrate on DR and summarize the existing and evolving programs at different ISOs/RTOs and the product markets they can participate in. We conclude by addressing some of the challenges and potential solutions for implementation of DR under smart grid and market paradigms.

846 citations


ReportDOI
01 Feb 2010
TL;DR: In this article, the authors present a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications, possibly including distributed and/or modular systems.
Abstract: This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

Journal ArticleDOI
TL;DR: This paper introduces smart home interfaces and device definitions to allow interoperability among ZigBee devices produced by various manufacturers of electrical equipment, meters, and smart energy enabling products.
Abstract: Wireless personal area network and wireless sensor networks are rapidly gaining popularity, and the IEEE 802.15 Wireless Personal Area Working Group has defined no less than different standards so as to cater to the requirements of different applications. The ubiquitous home network has gained widespread attentions due to its seamless integration into everyday life. This innovative system transparently unifies various home appliances, smart sensors and energy technologies. The smart energy market requires two types of ZigBee networks for device control and energy management. Today, organizations use IEEE 802.15.4 and ZigBee to effectively deliver solutions for a variety of areas including consumer electronic device control, energy management and efficiency, home and commercial building automation as well as industrial plant management. We present the design of a multi-sensing, heating and airconditioning system and actuation application - the home users: a sensor network-based smart light control system for smart home and energy control production. This paper designs smart home device descriptions and standard practices for demand response and load management "Smart Energy" applications needed in a smart energy based residential or light commercial environment. The control application domains included in this initial version are sensing device control, pricing and demand response and load control applications. This paper introduces smart home interfaces and device definitions to allow interoperability among ZigBee devices produced by various manufacturers of electrical equipment, meters, and smart energy enabling products. We introduced the proposed home energy control systems design that provides intelligent services for users and we demonstrate its implementation using a real testbad.

DOI
10 Jan 2010
TL;DR: Develop a summary of power reliability and quality characteristics that affect price and availability (supply side) and desirability (demand side), and survey existing price communications and develop harmonized specification.
Abstract: Actions under this plan will result in a common specification for price. This specification will be used in demand response applications, market transactions, distributed energy resource integration, meter communications, and many other inter-domain communications. Businesses, homes, electric vehicles, and the power grid will benefit from automated and timely communication of energy prices, characteristics, quantities, and related information. Price is a number associated with product characteristics, including delivery schedule, quality (reliability, power quality, source, etc.), and environmental and regulatory characteristics. Price also is a common abstraction for abundance, scarcity, and other market conditions. A common price model will define how to exchange data on energy characteristics, availability, and schedules to support efficient communication of information in any market. Why Coordination of energy supply and demand requires a common understanding of supply and demand. A simple quotation of price, quantity, and characteristics in a consistent way across markets enables new markets and integration of distributed energy resources. Price and product definition are key to transparent market accounting. A consistent information model will reduce implementation costs. A consistent model for market information exchange simplifies communication flow and improves the quality and efficiency of actions taken by energy providers, distributors, and consumers. Better communication of actionable energy prices facilitates effective dynamic pricing and is necessary for net-zero-energy buildings, supply-demand integration, and other efficiency and sustainability initiatives. Common, up-to-the-moment pricing information is also an enabler of local generation and storage of energy, such as electric-charging and thermal-storage technologies for homes and buildings. Major Objectives • Develop a summary of power reliability and quality characteristics that affect price and availability (supply side) and desirability (demand side). • Survey existing price communications and develop harmonized specification (review by October 2009, draft specification by April 2010). • Engage the broad group of stakeholders into the effort. • Build on existing work in financial energy markets and existing demand response programs. • Integrate with schedule and interval specifications under development (see section 5.3). Project Team NIST Lead: Dave Holmberg

Proceedings ArticleDOI
04 Nov 2010
TL;DR: The method described in this paper provides a 3rd party escrow mechanism for authenticated anonymous meter readings which are difficult to associate with a particular smart meter or customer.
Abstract: The security and privacy of future smart grid and smart metering networks is important to their rollout and eventual acceptance by the public: research in this area is ongoing and smart meter users will need to be reassured that their data is secure. This paper describes a method for securely anonymizing frequent (for example, every few minutes) electrical metering data sent by a smart meter. Although such frequent metering data may be required by a utility or electrical energy distribution network for operational reasons, this data may not necessarily need to be attributable to a specific smart meter or consumer. It does, however, need to be securely attributable to a specific location (e.g. a group of houses or apartments) within the electricity distribution network. The method described in this paper provides a 3rd party escrow mechanism for authenticated anonymous meter readings which are difficult to associate with a particular smart meter or customer. This method does not preclude the provision of attributable metering data that is required for other purposes such as billing, account management or marketing research purposes.

Journal ArticleDOI
Anthony R. Metke1, Randy L. Ekl1
TL;DR: This paper discusses key security technologies for a smart grid system, including public key infrastructures and trusted computing, which will require significant dependence on distributed intelligence and broadband communication capabilities.
Abstract: There is virtually universal agreement that it is necessary to upgrade the electric grid to increase overall system efficiency and reliability. Much of the technology currently in use by the grid is outdated and in many cases unreliable. There have been three major blackouts in the past ten years. The reliance on old technology leads to inefficient systems, costing unnecessary money to the utilities, consumers, and taxpayers. To upgrade the grid, and to operate an improved grid, will require significant dependence on distributed intelligence and broadband communication capabilities. The access and communications capabilities require the latest in proven security technology for extremely large, wide-area communications networks. This paper discusses key security technologies for a smart grid system, including public key infrastructures and trusted computing.

Journal ArticleDOI
TL;DR: Using good predictions, in advance planning and real-time control of domestic appliances, a better matching of demand and supply can be achieved and a more energy-efficient electricity supply chain can be achieve.
Abstract: Emerging new technologies like distributed generation, distributed storage, and demand-side load management will change the way we consume and produce energy. These techniques enable the possibility to reduce the greenhouse effect and improve grid stability by optimizing energy streams. By smartly applying future energy production, consumption, and storage techniques, a more energy-efficient electricity supply chain can be achieved. In this paper a three-step control methodology is proposed to manage the cooperation between these technologies, focused on domestic energy streams. In this approach, (global) objectives like peak shaving or forming a virtual power plant can be achieved without harming the comfort of residents. As shown in this work, using good predictions, in advance planning and real-time control of domestic appliances, a better matching of demand and supply can be achieved.

Proceedings ArticleDOI
04 Nov 2010
TL;DR: A distributed incremental data aggregation approach, in which data aggregation is performed at all smart meters involved in routing the data from the source meter to the collector unit, which is especially suitable for smart grids with repetitive routine data aggregation tasks.
Abstract: In this paper, we present a distributed incremental data aggregation approach, in which data aggregation is performed at all smart meters involved in routing the data from the source meter to the collector unit. With a carefully constructed aggregation tree, the aggregation route covers the entire local neighborhood or any arbitrary set of designated nodes with minimum overhead. To protect user privacy, homomorphic encryption is used to secure the data en route. Therefore, all the meters participate in the aggregation, without seeing any intermediate or final result. In this way, our approach supports efficient data aggregation in smart grids, while fully protecting user privacy. This approach is especially suitable for smart grids with repetitive routine data aggregation tasks.

Proceedings ArticleDOI
02 Nov 2010
TL;DR: It is shown that even without a priori knowledge of household activities or prior training, it is possible to extract complex usage patterns from smart meter data using off-the-shelf statistical methods.
Abstract: Household smart meters that measure power consumption in real-time at fine granularities are the foundation of a future smart electricity grid. However, the widespread deployment of smart meters has serious privacy implications since they inadvertently leak detailed information about household activities. In this paper, we show that even without a priori knowledge of household activities or prior training, it is possible to extract complex usage patterns from smart meter data using off-the-shelf statistical methods. Our analysis uses two months of data from three homes, which we instrumented to log aggregate household power consumption every second. With the data from our small-scale deployment, we demonstrate the potential for power consumption patterns to reveal a range of information, such as how many people are in the home, sleeping routines, eating routines, etc. We then sketch out the design of a privacy-enhancing smart meter architecture that allows an electric utility to achieve its net metering goals without compromising the privacy of its customers.

Proceedings ArticleDOI
22 Mar 2010
TL;DR: Simulation results confirm that the proposed distributed algorithm significantly reduces the peak-to-average-ratio (PAR) in load demand and the total cost in the system.
Abstract: In this paper, we consider deployment of energy consumption scheduling (ECS) devices in smart meters for autonomous demand side management within a neighborhood, where several buildings share an energy source. The ECS devices are assumed to be built inside smart meters and to be connected to not only the power grid, but also to a local area network which is essential for handling two-way communications in a smart grid infrastructure. They interact automatically by running a distributed algorithm to find the optimal energy consumption schedule for each subscriber, with an aim at reducing the total energy cost as well as the peak-to-average-ratio (PAR) in load demand in the system. Incentives are also provided for the subscribers to actually use the ECS devices via a novel pricing model, derived from a game-theoretic analysis. Simulation results confirm that our proposed distributed algorithm significantly reduces the PAR and the total cost in the system.

Journal ArticleDOI
TL;DR: It is assumed that time synchronized measurements will be ubiquitously available at all high-voltage substations at very high rates and how this information can be utilized more effectively for real-time operation as well as for subsequent decision making is examined.
Abstract: In this paper we assume that time synchronized measurements will be ubiquitously available at all high-voltage substations at very high rates. We examine how this information can be utilized more effectively for real-time operation as well as for subsequent decision making. This new information available in real time is different, both in quality and in quantity, than the real-time measurements available today. The promise of new and improved applications to operate the power system more reliably and efficiently has been recognized but is still in conceptual stages. Also, the present system to handle this real-time data has been recognized to be inadequate but even conceptual designs of such infrastructure needed to store and communicate the data are in their infancy. In this paper, we first suggest the requirements for an information infrastructure to handle ubiquitous phasor measurements recognizing that the quantity and rate of data would make it impossible to store all the data centrally as done today. Then we discuss the new and improved applications, classified into two categories: one is the set of automatic wide-area controls and the other is the set of control center (EMS) functions with special attention to the state estimator. Finally, given that the availability of phasor measurements will grow over time, the path for smooth transition from present-day systems and applications to those discussed here is delineated.

Journal ArticleDOI
G.N. Ericsson1
TL;DR: The paper treats cyber security issues, and it highlights access points in a substation, and information security domain modeling is treated.
Abstract: The introduction of “smart grid” solutions imposes that cyber security and power system communication systems must be dealt with extensively. These parts together are essential for proper electricity transmission, where the information infrastructure is critical. The development of communication capabilities, moving power control systems from “islands of automation” to totally integrated computer environments, have opened up new possibilities and vulnerabilities. Since several power control systems have been procured with “openness” requirements, cyber security threats become evident. For refurbishment of a SCADA/EMS system, a separation of the operational and administrative computer systems must be obtained. The paper treats cyber security issues, and it highlights access points in a substation. Also, information security domain modeling is treated. Cyber security issues are important for “smart grid” solutions. Broadband communications open up for smart meters, and the increasing use of wind power requires a “smart grid system”.

Proceedings ArticleDOI
04 Nov 2010
TL;DR: It is suggested that home electrical power routing can be used to moderate the home's load signature in order to hide appliance usage information and set the ground for further research on the subject of optimising home energy management with regards to hiding load signatures.
Abstract: Smart grid privacy encompasses the privacy of information extracted by analysing smart metering data. In this paper, we suggest that home electrical power routing can be used to moderate the home's load signature in order to hide appliance usage information. In particular, 1) we introduce a power management model using a rechargeable battery, 2) we propose a power mixing algorithm, and 3) we evaluate its protection level by proposing three different privacy metrics: an information theoretic (relative entropy), a clustering classification, and a correlation/regression one; these are tested on different metering datasets. This paper sets the ground for further research on the subject of optimising home energy management with regards to hiding load signatures.


Book
01 Jan 2010
TL;DR: Interconnecting Smart Objects with IP is the first book that takes a holistic approach to the revolutionary area of IP-based smart objects, offering an in-depth examination of relevant IP protocols to build large scale smart object networks in support of a myriad of new services.
Abstract: Smart object technology, sometimes called the Internet of Things, is having a profound impact on our day-to-day lives. Interconnecting Smart Objects with IP is the first book that takes a holistic approach to the revolutionary area of IP-based smart objects. Smart objects are the intersection of networked embedded systems, wireless sensor networks, ubiquitous and pervasive computing, mobile telephony and telemetry, and mobile computer networking. This book consists of three parts, Part I focuses on the architecture of smart objects networking, Part II covers the hardware, software, and protocols for smart objects, and Part III provides case studies on how and where smart objects are being used today and in the future. The book covers the fundamentals of IP communication for smart objects, IPv6, and web services, as well as several newly specified low-power IP standards such as the IETF 6LoWPAN adaptation layer and the RPL routing protocol. This book contains essential information not only for the technical reader but also for policy makers and decision makers in the area of smart objects both for private IP networks and the Internet. Shows in detail how connecting smart objects impacts our lives with practical implementation examples and case studies Provides an in depth understanding of the technological and architectural aspects underlying smart objects technology Offers an in-depth examination of relevant IP protocols to build large scale smart object networks in support of a myriad of new services Table of Contents Part I: The Architecture Chapter 1: What are Smart objects? Chapter 2: The IP protocol architecture Chapter 3: Why IP for smart objects? Chapter 4: IPv6 for Smart Object Networks and The Internet of Things Chapter 5: Routing Chapter 6: Transport Protocols Chapter 7: Service Discovery Chapter 8: Security for Smart Objects Chapter 9: Web services For Smart Objects Chapter 10: Connectivity models for smart object networks Part II: The Technology Chapter 11: What is a Smart Object? Chapter 12: Low power link layer for smart objects networks Chapter 13: uIP A Lightweight IP Stack Chapter 14: Standardization Chapter 15: IPv6 for Smart Object Networks - A Technology Refresher Chapter 16: The 6LoWPAN Adaptation Layer Chapter 17: RPL Routing in Smart Object Networks Chapter 18: The IPSO Alliance Chapter 19: Non IP Technology Part III: The Applications Chapter 20: Smart Grid Chapter 21: Industrial Automation Chapter 22: Smart Cities and Urban Networks Chapter 23: Home Automation Chapter 24: Building Automation Chapter 25: Structural Health Monitoring Chapter 26: Container Tracking

Proceedings ArticleDOI
04 Nov 2010
TL;DR: This work proposes two algorithms to place encrypted devices in the system such as to maximize their utility in terms of increased system security, and illustrates the effectiveness of these algorithms on two IEEE benchmark power networks under two attack and protection cost models.
Abstract: State estimators in power systems are currently used to, for example, detect faulty equipment and to route power flows. It is believed that state estimators will also play an increasingly important role in future smart power grids, as a tool to optimally and more dynamically route power flows. Therefore security of the estimator becomes an important issue. The estimators are currently located in control centers, and large numbers of measurements are sent over unencrypted communication channels to the centers. We here study stealthy false-data attacks against these estimators. We define a security measure tailored to quantify how hard attacks are to perform, and describe an efficient algorithm to compute it. Since there are so many measurement devices in these systems, it is not reasonable to assume that all devices can be made encrypted overnight in the future. Therefore we propose two algorithms to place encrypted devices in the system such as to maximize their utility in terms of increased system security. We illustrate the effectiveness of our algorithms on two IEEE benchmark power networks under two attack and protection cost models.

Proceedings ArticleDOI
25 Jul 2010
TL;DR: In this paper, the authors present various smart grid applications achieved through standardized wireless communication technologies, e.g. IEEE 802.11 based wireless LAN, 802.16 based WiMAX, 3G/4G cellular, ZigBee based on IEEE 802., 802.15 based MobileFi, etc.
Abstract: Two-way seamless communication is the key aspect of realizing the vision of smart grid. There are several standardized wired and wireless communication technologies available for various smart grid applications. With the recent growth in wireless communication, it can offer standardized technologies for wide area, metropolitan area, local area, and personal area networks. Moreover, wireless technologies not only offer significant benefits over wired, such as including low installation cost, rapid deployment, mobility, etc., but also more suitable for remote end applications. Several activities are going on to explore specific applications of these technologies in smart grid environment. This paper presents various smart grid applications achieved through standardized wireless communication technologies, e.g. IEEE 802.11 based wireless LAN, IEEE 802.16 based WiMAX, 3G/4G cellular, ZigBee based on IEEE 802.15, IEEE 802.20 based MobileFi, etc. Moreover, challenges related to each wireless communication technologies have been discussed in brief.

Journal ArticleDOI
TL;DR: This paper summarizes diverse concepts for the next generation of power distribution system, and two transmission engineering techniques are modified for use in distribution engineering: state estimation, and locational marginal pricing.
Abstract: This paper summarizes diverse concepts for the next generation of power distribution system. The objective is to bring distribution engineering more closely aligned to smart grid philosophy. Issues of design, operation, and control are discussed with regard to new system theoretic as well as component/materials advances. In particular, two transmission engineering techniques are modified for use in distribution engineering: state estimation, and locational marginal pricing. The impact of electronic control in distribution systems is discussed. Because education and training have a great impact on distribution engineering, these topics are discussed as well.

Journal ArticleDOI
TL;DR: This paper presents a co-optimization formulation of the generation unit commitment and transmission switching problem while ensuring N-1 reliability, and shows that the optimal topology of the network can vary from hour to hour.
Abstract: Currently, there is a national push for a smarter electric grid, one that is more controllable and flexible. The full control of transmission assets are not currently built into electric network optimization models. Optimal transmission switching is a straightforward way to leverage grid controllability: to make better use of the existing system and meet growing demand with existing infrastructure. Previous papers have shown that optimizing the network topology improves the dispatch of electrical networks. Such optimal topology dispatch can be categorized as a smart grid application where there is a co-optimization of both generators and transmission topology. In this paper we present a co-optimization formulation of the generation unit commitment and transmission switching problem while ensuring N-1 reliability. We show that the optimal topology of the network can vary from hour to hour. We also show that optimizing the topology can change the optimal unit commitment schedule. This problem is large and computationally complex even for medium sized systems. We present decomposition and computational approaches to solving this problem. Results are presented for the IEEE RTS 96 test case.

Journal Article
TL;DR: In this paper, the authors show how loads that meet the communication and control requirements can be aggregated and dispatched-turned on or off to help manage the electric power grid and give a concrete example of demand dispatch as it can be applied to plug-in electric vehicles: smart charging.
Abstract: In this article we touch on some background requirements for demand dispatch and how the Internet can be used for communication and control. In addition, we review some of the basics of the operation of the electric power grid. We show how loads that meet the communication and control requirements can be aggregated and dispatched-turned on or off-to help manage the grid. Aggregated loads will be able to perform many of the same ancillary services for the grid that are provided by power plants today. We describe some benefits of load-based ancillary services, such as the potential for very fast response, and explain how some characteristics of load-based services differ from power plants. Finally, we give a concrete example of demand dispatch as it can be applied to plug-in electric vehicles: smart charging.

Proceedings ArticleDOI
10 May 2010
TL;DR: This paper provides a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions and shows that in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh.
Abstract: The use of energy storage devices in homes has been advocated as one of the main ways of saving energy and reducing the reliance on fossil fuels in the future Smart Grid. However, if micro-storage devices are all charged at the same time using power from the electricity grid, it means a higher demand and, hence, requires more generation capacity, results in more carbon emissions, and, in the worst case, breaks down the system due to over-demand. To alleviate such issues, in this paper, we present a novel agent-based micro-storage management technique that allows all (individually-owned) storage devices in the system to converge to profitable, efficient behaviour. Specifically, we provide a general framework within which to analyse the Nash equilibrium of an electricity grid and devise new agent-based storage learning strategies that adapt to market conditions. Taken altogether, our solution shows that, specifically, in the UK electricity market, it is possible to achieve savings of up to 13% on average for a consumer on his electricity bill with a storage device of 4 kWh. Moreover, we show that there exists an equilibrium where only 38% of UK households would own storage devices and where social welfare would be also maximised (with an overall annual savings of nearly GBP 1.5B at that equilibrium).