scispace - formally typeset
Search or ask a question

Showing papers on "Smart grid published in 2014"


Journal ArticleDOI
TL;DR: In this article, a survey of demand response potentials and benefits in smart grids is presented, with reference to real industrial case studies and research projects, such as smart meters, energy controllers, communication systems, etc.
Abstract: The smart grid is conceived of as an electric grid that can deliver electricity in a controlled, smart way from points of generation to active consumers. Demand response (DR), by promoting the interaction and responsiveness of the customers, may offer a broad range of potential benefits on system operation and expansion and on market efficiency. Moreover, by improving the reliability of the power system and, in the long term, lowering peak demand, DR reduces overall plant and capital cost investments and postpones the need for network upgrades. In this paper a survey of DR potentials and benefits in smart grids is presented. Innovative enabling technologies and systems, such as smart meters, energy controllers, communication systems, decisive to facilitate the coordination of efficiency and DR in a smart grid, are described and discussed with reference to real industrial case studies and research projects.

1,901 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model.
Abstract: This paper presents a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model. The concept goal of the smart grid along with the future deployment of the EVs puts forward various challenges in terms of electric grid infrastructure, communication and control. Following an intensive review on advanced smart metering and communication infrastructures, the strategy for integrating the EVs into the electric grid is presented. Various EV smart charging technologies are also extensively examined with the perspective of their potential, impacts and limitations under the vehicle-to-grid (V2G) phenomenon. Moreover, the high penetration of renewable energy sources (wind and photovoltaic solar) is soaring up into the power system. However, their intermittent power output poses different challenges on the planning, operation and control of the power system networks. On the other hand, the deployment of EVs in the energy market can compensate for the fluctuations of the electric grid. In this context, a literature review on the integration of the renewable energy and the latest feasible solution using EVs with the insight of the promising research gap to be covered up are investigated. Furthermore, the feasibility of the smart V2G system is thoroughly discussed. In this paper, the EVs interactions with the smart grid as the future energy system model are extensively discussed and research gap is revealed for the possible solutions.

793 citations


Journal ArticleDOI
TL;DR: In this paper, a self-synchronized synchronverter is proposed to improve the performance of grid-connected inverters by removing the dedicated synchronization unit, which can automatically synchronize itself with the grid before connection and track the grid frequency after connection.
Abstract: A synchronverter is an inverter that mimics synchronous generators, which offers a mechanism for power systems to control grid-connected renewable energy and facilitates smart grid integration. Similar to other grid-connected inverters, it needs a dedicated synchronization unit, e.g., a phase-locked loop (PLL), to provide the phase, frequency, and amplitude of the grid voltage as references. In this paper, a radical step is taken to improve the synchronverter as a self-synchronized synchronverter by removing the dedicated synchronization unit. It can automatically synchronize itself with the grid before connection and track the grid frequency after connection. This considerably improves the performance, reduces the complexity, and computational burden of the controller. All the functions of the original synchronverter, such as frequency and voltage regulation, real power, and reactive power control, are maintained. Both simulation and experimental results are presented to validate the control strategy. Experimental results have shown that the proposed control strategy can improve the performance of frequency tracking by more than 65%, the performance of real power control by 83%, and the performance of reactive power control by about 70%.

793 citations


Journal ArticleDOI
TL;DR: The objective of this paper is to provide a review of distributed control and management strategies for the next generation power system in the context of microgrids and identifies challenges and opportunities ahead.
Abstract: The objective of this paper is to provide a review of distributed control and management strategies for the next generation power system in the context of microgrids. This paper also identifies future research directions. The next generation power system, also referred to as the smart grid, is distinct from the existing power system due to its extensive use of integrated communication, advanced components such as power electronics, sensing, and measurement, and advanced control technologies. At the same time, the need for increased number of small distributed and renewable energy resources can exceed the capabilities of an available computational resource. Therefore, the recent literature has seen a significant research effort on dividing the control task among different units, which gives rise to the development of several distributed techniques. This paper discusses features and characteristics of these techniques, and identifies challenges and opportunities ahead. The paper also discusses the relationship between distributed control and hierarchical control.

594 citations


Journal ArticleDOI
TL;DR: Using the model predictive control technique, the optimal operation of the microgrid is determined using an extended horizon of evaluation and recourse, which allows a proper dispatch of the energy storage units.
Abstract: This paper presents the mathematical formulation of the microgrid's energy management problem and its implementation in a centralized Energy Management System (EMS) for isolated microgrids Using the model predictive control technique, the optimal operation of the microgrid is determined using an extended horizon of evaluation and recourse, which allows a proper dispatch of the energy storage units The energy management problem is decomposed into Unit Commitment (UC) and Optimal Power Flow (OPF) problems in order to avoid a mixed-integer non-linear formulation The microgrid is modeled as a three-phase unbalanced system with presence of both dispatchable and non-dispatchable distributed generation The proposed EMS is tested in an isolated microgrid based on a CIGRE medium-voltage benchmark system Results justify the need for detailed three-phase models of the microgrid in order to properly account for voltage limits and procure reactive power support

537 citations


Journal ArticleDOI
TL;DR: This paper mainly focuses on demand side management and demand response, including drivers and benefits, shiftable load scheduling methods and peak shaving techniques, and a novel electricity demand control technique using real-time pricing is proposed.

506 citations


Journal ArticleDOI
TL;DR: Smart grid goals include a commitment to large penetration of highly fluctuating renewables, thus calling to reconsider current practices, in particular the use of standard OPF, which can lead to frequent conditions where power line flow ratings are significantly exceeded.
Abstract: When uncontrollable resources fluctuate, optimal power flow (OPF), routinely used by the electric power industry to redispatch hourly controllable generation (coal, gas, and hydro plants) over control areas of transmission networks, can result in grid instability and, potentially, cascading outages. This risk arises because OPF dispatch is computed without awareness of major uncertainty, in particular fluctuations in renewable output. As a result, grid operation under OPF with renewable variability can lead to frequent conditions where power line flow ratings are significantly exceeded. Such a condition, which is borne by our simulations of real grids, is considered undesirable in power engineering practice. Possibly, it can lead to a risky outcome that compromises grid stability---line tripping. Smart grid goals include a commitment to large penetration of highly fluctuating renewables, thus calling to reconsider current practices, in particular the use of standard OPF. Our chance-constrained (CC) OPF co...

504 citations


Journal ArticleDOI
TL;DR: This paper compiles information about different communication network requirements for different smart grid applications, ranging from those used in a Home Area Network, Neighborhood Area Network and Wide-Area Network, to serve as a comprehensive database of technology requirements and best practices for use by communication engineers when designing a smart grid network.

490 citations


Journal ArticleDOI
TL;DR: This paper aims to present some of the most representative threats to the smart home/smart grid environment and presents promising security countermeasures with respect to the identified specific security goals for each presented scenario.
Abstract: The electricity industry is now at the verge of a new era—an era that promises, through the evolution of the existing electrical grids to smart grids, more efficient and effective power management, better reliability, reduced production costs, and more environmentally friendly energy generation. Numerous initiatives across the globe, led by both industry and academia, reflect the mounting interest around not only the enormous benefits but also the great risks introduced by this evolution. This paper focuses on issues related to the security of the smart grid and the smart home, which we present as an integral part of the smart grid. Based on several scenarios, we aim to present some of the most representative threats to the smart home/smart grid environment. The threats detected are categorized according to specific security goals set for the smart home/smart grid environment, and their impact on the overall system security is evaluated. A review of contemporary literature is then conducted with the aim of presenting promising security countermeasures with respect to the identified specific security goals for each presented scenario. An effort to shed light on open issues and future research directions concludes this paper.

484 citations


Journal ArticleDOI
Xiwang Li1, Jin Wen1
TL;DR: In this paper, an up-to-date overview of research on application of building energy modeling methods in optimal control for single building and multiple buildings is also summarized in this paper, and different model-based and model-free optimization methods for building energy system operation are reviewed and compared.
Abstract: Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Better or even optimal building energy control and operation strategies provide great opportunities to reduce building energy consumption. Moreover, it is estimated by the National Energy Technology Laboratory that more than one-fourth of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. Energy forecasting models for building energy systems are essential to building energy control and operation. Three general categories of building energy forecasting models have been reported in the literature which include white-box (physics-based), black-box (data-driven), and gray-box (combination of physics based and data-driven) modeling approaches. This paper summarizes the existing efforts in this area as well as other critical areas related to building energy modeling, such as short-term weather forecasting. An up-to-date overview of research on application of building energy modeling methods in optimal control for single building and multiple buildings is also summarized in this paper. Different model-based and model-free optimization methods for building energy system operation are reviewed and compared in this paper. Agent based modeling, as a new modeling strategy, has made a remarkable progress in distributed energy systems control and optimization in the past years. The research literature on application of agent based model in building energy system control and operation is also identified and discussed in this paper.

470 citations


Journal ArticleDOI
TL;DR: This review discusses the most relevant studies on electric demand prediction over the last 40 years, and presents the different models used as well as the future trends, and analyzes the latest studies on demand forecasting in the future environments that emerge from the usage of smart grids.
Abstract: Recently there has been a significant proliferation in the use of forecasting techniques, mainly due to the increased availability and power of computation systems and, in particular, to the usage of personal computers. This is also true for power network systems, where energy demand forecasting has been an important field in order to allow generation planning and adaptation. Apart from the quantitative progression, there has also been a change in the type of models proposed and used. In the `70s, the usage of non-linear techniques was generally not popular among scientists and engineers. However, in the last two decades they have become very important techniques in solving complex problems which would be very difficult to tackle otherwise. With the recent emergence of smart grids, new environments have appeared capable of integrating demand, generation, and storage. These employ intelligent and adaptive elements that require more advanced techniques for accurate and precise demand and generation forecasting in order to work optimally. This review discusses the most relevant studies on electric demand prediction over the last 40 years, and presents the different models used as well as the future trends. Additionally, it analyzes the latest studies on demand forecasting in the future environments that emerge from the usage of smart grids.

Journal ArticleDOI
TL;DR: It is proved that the proposed strategies are able to make both games converge to their own equilibrium and is able to significantly reduce peak load and demand variation.
Abstract: Demand Response Management (DRM) is a key component of the future smart grid that helps to reduce power peak load and variation. Different from most existing studies that focus on the scenario with a single utility company, this paper studies DRM with multiple utility companies. First, the interaction between utility companies and residential users is modeled as a two-level game. That is, the competition among the utility companies is formulated as a non-cooperative game, while the interaction among the residential users is formulated as an evolutionary game. Then, we prove that the proposed strategies are able to make both games converge to their own equilibrium. In addtion, the strategies for the utility companies and the residential users are implemented by distributed algorithms. Illustrative examples show that the proposed scheme is able to significantly reduce peak load and demand variation.

Journal ArticleDOI
TL;DR: In this article, a consensus-based distributed primal-dual perturbation (PDP) algorithm was proposed to solve the distributed demand response control problem in a smart grid, where each agent has no global knowledge and can access only its local mapping and constraint functions.
Abstract: Various distributed optimization methods have been developed for solving problems which have simple local constraint sets and whose objective function is the sum of local cost functions of distributed agents in a network. Motivated by emerging applications in smart grid and distributed sparse regression, this paper studies distributed optimization methods for solving general problems which have a coupled global cost function and have inequality constraints. We consider a network scenario where each agent has no global knowledge and can access only its local mapping and constraint functions. To solve this problem in a distributed manner, we propose a consensus-based distributed primal-dual perturbation (PDP) algorithm. In the algorithm, agents employ the average consensus technique to estimate the global cost and constraint functions via exchanging messages with neighbors, and meanwhile use a local primal-dual perturbed subgradient method to approach a global optimum. The proposed PDP method not only can handle smooth inequality constraints but also non-smooth constraints such as some sparsity promoting constraints arising in sparse optimization. We prove that the proposed PDP algorithm converges to an optimal primal-dual solution of the original problem, under standard problem and network assumptions. Numerical results illustrating the performance of the proposed algorithm for a distributed demand response control problem in smart grid are also presented.

Journal ArticleDOI
TL;DR: The study shows that DDRC applied in residential HVAC systems could significantly reduce peak loads and electricity bills with a modest variation in thermal comfort.
Abstract: Demand response and dynamic retail pricing of electricity are key factors in a smart grid to reduce peak loads and to increase the efficiency of the power grid. Air-conditioning and heating loads in residential buildings are major contributors to total electricity consumption. In hot climates, such as Austin, Texas, the electricity cooling load of buildings results in critical peak load during the on-peak period. Demand response (DR) is valuable to reduce both electricity loads and energy costs for end users in a residential building. This paper focuses on developing a control strategy for the HVACs to respond to real-time prices for peak load reduction. A proposed dynamic demand response controller (DDRC) changes the set-point temperature to control HVAC loads depending on electricity retail price published each 15 minutes and partially shifts some of this load away from the peak. The advantages of the proposed control strategy are that DDRC has a detailed scheduling function and compares the real-time retail price of electricity with a threshold price that customers set by their preference in order to control HVAC loads considering energy cost. In addition, a detailed single family house model is developed using OpenStudio and Energyplus considering the geometry of a residential building and geographical environment. This HVAC modeling provides simulation of a house. Comfort level is, moreover, reflected into the DDRC to minimize discomfort when DDRC changes the set-point temperature. Our proposed DDRC is implemented in MATLAB/SIMULINK and connected to the EnergyPlus model via building controls virtual test bed (BCVTB). The real-time retail price is based on the real-time wholesale price in the ERCOT market in Texas. The study shows that DDRC applied in residential HVAC systems could significantly reduce peak loads and electricity bills with a modest variation in thermal comfort.

Proceedings ArticleDOI
05 May 2014
TL;DR: A software-defined approach for the IoT environment to dynamically achieve differentiated quality levels to different IoT tasks in very heterogeneous wireless networking scenarios and preliminary simulation performance results indicate that the approach and the extended MINA system can support efficient exploitation of the IoT multinetwork capabilities.
Abstract: The growing interest in the Internet of Things (IoT) has resulted in a number of wide-area deployments of IoT subnetworks, where multiple heterogeneous wireless communication solutions coexist: from multiple access technologies such as cellular, WiFi, ZigBee, and Bluetooth, to multi-hop ad-hoc and MANET routing protocols, they all must be effectively integrated to create a seamless communication platform. Managing these open, geographically distributed, and heterogeneous networking infrastructures, especially in dynamic environments, is a key technical challenge. In order to take full advantage of the many opportunities they provide, techniques to concurrently provision the different classes of IoT traffic across a common set of sensors and networking resources must be designed. In this paper, we will design a software-defined approach for the IoT environment to dynamically achieve differentiated quality levels to different IoT tasks in very heterogeneous wireless networking scenarios. For this, we extend the Multinetwork INformation Architecture (MINA), a reflective (self-observing and adapting via an embodied Observe-Analyze-Adapt loop) middleware with a layered IoT SDN controller. The developed IoT SDN controller originally i) incorporates and supports commands to differentiate flow scheduling over task-level, multi-hop, and heterogeneous ad-hoc paths and ii) exploits Network Calculus and Genetic Algorithms to optimize the usage of currently available IoT network opportunities. We have applied the extended MINA SDN prototype in the challenging IoT scenario of wide-scale integration of electric vehicles, electric charging sites, smart grid infrastructures, and a wide set of pilot users, as targeted by the Artemis Internet of Energy and Arrowhead projects. Preliminary simulation performance results indicate that our approach and the extended MINA system can support efficient exploitation of the IoT multinetwork capabilities.

Journal ArticleDOI
TL;DR: In this paper, the interactions and energy trading decisions of a number of geographically distributed storage units are studied using a novel framework based on game theory, and a novel algorithm that is guaranteed to reach an equilibrium point is proposed.
Abstract: Electric storage units constitute a key element in the emerging smart grid system. In this paper, the interactions and energy trading decisions of a number of geographically distributed storage units are studied using a novel framework based on game theory. In particular, a noncooperative game is formulated between storage units, such as plug-in hybrid electric vehicles, or an array of batteries that are trading their stored energy. Here, each storage unit's owner can decide on the maximum amount of energy to sell in a local market so as to maximize a utility that reflects the tradeoff between the revenues from energy trading and the accompanying costs. Then in this energy exchange market between the storage units and the smart grid elements, the price at which energy is traded is determined via an auction mechanism. The game is shown to admit at least one Nash equilibrium and a novel algorithm that is guaranteed to reach such an equilibrium point is proposed. Simulation results show that the proposed approach yields significant performance improvements, in terms of the average utility per storage unit, reaching up to 130.2% compared to a conventional greedy approach.

Journal ArticleDOI
TL;DR: In this paper, the authors consider the role of the user in the smart grid, and the contexts in which such roles might emerge, and propose that smart grid designs must look beyond simply the technology and recognise that smart user who is actively engaged with energy is critical to much of what is proposed by demand side management.
Abstract: Smart grids are a key feature of future energy scenarios, with the overarching goal of better aligning energy generation and demand. The work presented here considers the role of the user in such systems, and the contexts in which such roles might emerge. The data used is drawn from focus groups with 72 participants, using novel scenario techniques to contextualise smart grid technologies in domestic settings. Two contrasting visions of the smart grid are presented, a centralised system based on current institutional arrangements, and an alternative system in which decentralisation of generation and control is pursued. Using the concepts of ‘energy consumer’ and ‘energy citizen’, the paper considers what forms of engagement are likely to be generated by the two visions. We propose that smart grid designs must look beyond simply the technology and recognise that a smart user who is actively engaged with energy is critical to much of what is proposed by demand side management. We conclude that the energy citizen holds out most promise in this regard. The implications of this for policy makers are discussed.

Proceedings ArticleDOI
01 Jan 2014
TL;DR: This survey article expands fog computing concept to the decentralized smart building control, recognizes cloudlets as special case of fog computing, and relates it to the software defined networks (SDN) scenarios.
Abstract: Cloud services to smart things face latency and intermittent connectivity issues. Fog devices are positioned between cloud and smart devices. Their high speed Internet connection to the cloud, and physical proximity to users, enable real time applications and location based services, and mobility support. Cisco promoted fog computing concept in the areas of smart grid, connected vehicles and wireless sensor and actuator networks. This survey article expands this concept to the decentralized smart building control, recognizes cloudlets as special case of fog computing, and relates it to the software defined networks (SDN) scenarios. Our literature review identifies a handful number of articles. Cooperative data scheduling and adaptive traffic light problems in SDN based vehicular networks, and demand response management in macro station and micro-grid based smart grids are discussed. Security, privacy and trust issues, control information overhead and network control policies do not seem to be studied so far within the fog computing concept.

Proceedings ArticleDOI
19 May 2014
TL;DR: A research project to develop a network of high-precision phasor measurement units, termed micro-synchrophasors or μPMUs, and explore the applications of μPMU data for electric power distribution systems is described.
Abstract: This paper describes a research project to develop a network of high-precision phasor measurement units, termed micro-synchrophasors or μPMUs, and explore the applications of μPMU data for electric power distribution systems.

Journal ArticleDOI
TL;DR: In this article, a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model (GFHM) is presented, which is designed by solving a linear matrix inequality (LMI).
Abstract: This paper presents a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model (GFHM). As more and more distributed generations (DG) are incorporated into the Smart Grid, the chaotic behavior occurs increasingly. To verify the behavior, a dynamic model which describes a power system with DG is presented firstly. Then, the simulation result shows that the power system can lead to chaos under certain initial conditions. Based on the universal approximation of GFHM, we confirm that the chaotic behavior could be suppressed by a new controller, which is designed by means of solving a linear matrix inequality (LMI). This approach could make a good application to suppress the chaos in Smart Grid. Finally, a numerical example is given to demonstrate the effectiveness of the proposed chaotic suppression strategy.


Journal ArticleDOI
TL;DR: Security analysis indicates that EPPDR can achieve privacy-preservation of electricity demand, forward secrecy of Users' session keys, and evolution of users' private keys.
Abstract: Smart grid has recently emerged as the next generation of power grid due to its distinguished features, such as distributed energy control, robust to load fluctuations, and close user-grid interactions. As a vital component of smart grid, demand response can maintain supply-demand balance and reduce users' electricity bills. Furthermore, it is also critical to preserve user privacy and cyber security in smart grid. In this paper, we propose an efficient privacy-preserving demand response (EPPDR) scheme which employs a homomorphic encryption to achieve privacy-preserving demand aggregation and efficient response. In addition, an adaptive key evolution technique is further investigated to ensure the users' session keys to be forward secure. Security analysis indicates that EPPDR can achieve privacy-preservation of electricity demand, forward secrecy of users' session keys, and evolution of users' private keys. In comparison with an existing scheme which also achieves forward secrecy, EPPDR has better efficiency in terms of computation and communication overheads and can adaptively control the key evolution to balance the trade-off between the communication efficiency and security level.

Journal ArticleDOI
TL;DR: In this paper, a high-voltage solid-state transformer (SST) lab prototype is presented as the active grid interface in smart grid architecture, where the designs of the key components of the system, including both power stage and controller platform, are presented.
Abstract: Solid-state transformer (SST) has been regarded as one of the most important emerging technologies for traction system and smart grid application. This paper presents the system design and performance demonstration of a high-voltage SST lab prototype that works as the active grid interface in smart grid architecture. Specifically, the designs of the key components of the system, including both power stage and controller platform, are presented. In addition, the advanced control system is developed to achieve high-performance operation. Furthermore, integration issues of SST with dc microgrid are presented. Lastly, tests under different scenarios are conducted to verify the following advanced features of the presented SST technology: 1) VAR compensation; 2) voltage regulation; 3) source voltage sag operation; and 4) microgrid integration.

Journal ArticleDOI
14 Oct 2014
TL;DR: The main goal of this work is to present the specialist and nonspecialist review of the most important ESSurrently available on the market.
Abstract: With the recent advances in the field of applications which require a certain power level over a short period of timeand with the air-quality constraints which have become more stringent in the last few decades, the energy storagesystems (ESSs) have come to play a crucial role for the electric grid. Various aspects such as the historical evolutionof ESSs, technical characteristics, and applications for the ESSs are thoroughly addressed. Special emphasis is given tothe interaction between the smart grid (SG) and microcrogrids applications, on the one hand, and the ESSs, on the otherhand. Thus, the main goal of this work is to present the specialist and nonspecialist review of the most important ESSscurrently available on the market.

Journal ArticleDOI
TL;DR: In this paper, a high-frequency link multilevel cascaded medium-voltage converter is proposed, which generates multiple isolated and balanced dc supplies for the converter, which inherently minimizes the voltage imbalance and common mode issues.
Abstract: Recent advances in solid-state semiconductors have led to the development of medium-voltage power converters (e.g., 6-36 kV) which could obviate the need for the step-up transformers of renewable power generation systems. The modular multilevel cascaded converters have been deemed as strong contenders for the development of medium-voltage converters, but the converters require multiple isolated and balanced dc supplies. In this paper, a high-frequency link multilevel cascaded medium-voltage converter is proposed. The common high-frequency link generates multiple isolated and balanced dc supplies for the converter, which inherently minimizes the voltage imbalance and common mode issues. An 11-kV system is designed and analyzed taking into account the specified system performance, control complexity, cost, and market availability of the power semiconductors. To verify the feasibility of the proposed system, a scaled down 1.73-kVA laboratory prototype test platform with a modular five-level cascaded converter is developed and explored in this paper, which converts a 210 V dc (rectified generator voltage) into three-phase 1 kV rms 50 Hz ac. The experimental results are analyzed and discussed. It is expected that the proposed new technology will have great potential for future renewable generation systems and smart grid applications.

Journal ArticleDOI
TL;DR: The incremental welfare consensus algorithm is distributed and cooperative such that it eliminates the need for a central energy-management unit, central price coordinator, or leader, and convergence to the global optimum without requiring a central controller/coordinator or leader.
Abstract: In this paper, we introduce the incremental welfare consensus algorithm for solving the energy management problem in a smart grid environment populated with distributed generators and responsive demands. The proposed algorithm is distributed and cooperative such that it eliminates the need for a central energy-management unit, central price coordinator, or leader. The optimum energy solution is found through local peer-to-peer communications among smart devices. Each distributed generation unit is connected to a local price regulator, as is each consumer unit. In response to the price of energy proposed by the local price regulators, the power regulator on each generation/consumer unit determines the level of generation/consumption power needed to optimize the benefit of the device. The consensus-based coordination among price regulators drives the behavior of the overall system toward the global optimum, despite the greedy behavior of each unit. The primary advantages of the proposed approach are: 1) convergence to the global optimum without requiring a central controller/coordinator or leader, despite the greedy behavior at the individual level and limited communications; and 2) scalability in terms of per-node computation and communications burden.

Journal ArticleDOI
TL;DR: In this article, a Global Model Based Anticipative Building Energy Management System (GMBA-BEMS) is proposed to optimize a compromise between user comfort and energy cost taking into account occupant expectations and physical constraints like energy price and power limitations.

Journal ArticleDOI
TL;DR: In this paper, an attack tree based threat model is presented to illustrate the energy-theft behaviors in AMI and summarize the current AMI energytheft detection schemes into three categories, i.e., classification-based, state estimation-based and game theory-based ones.

Journal ArticleDOI
TL;DR: The proposed authentication scheme considers the smart meters with computation-constrained resources and puts the minimum computation overhead on them and employs the Merkle hash tree technique to secure smart gird communication.
Abstract: Smart grid has emerged as the next generation of power grid, due to its reliability, flexibility, and efficiency. However, smart grid faces some critical security challenges such as the message injection attack and the replay attack. If these challenges cannot be properly addressed, an adversary can maliciously launch the injected or replayed message attacks to degrade the performance of smart grid. To cope with these challenging issues, in this paper, we propose an efficient authentication scheme that employs the Merkle hash tree technique to secure smart gird communication. Specifically, the proposed authentication scheme considers the smart meters with computation-constrained resources and puts the minimum computation overhead on them. Detailed security analysis indicates its security strength, namely, resilience to the replay attack, the message injection attack, the message analysis attack, and the message modification attack. In addition, extensive performance evaluation demonstrates its efficiency in terms of computation complexity and communication overhead.

Journal ArticleDOI
TL;DR: In this paper, the feasibility of and cost savings from repurposing an EV battery unit for peak-shifting was analyzed using MatLAB simulation of a residential energy profile and regulated cost structure.