scispace - formally typeset
Search or ask a question
Topic

Smart grid

About: Smart grid is a research topic. Over the lifetime, 37536 publications have been published within this topic receiving 627844 citations. The topic is also known as: intelligent grid.


Papers
More filters
Proceedings ArticleDOI
01 Dec 2017
TL;DR: The intention of this survey is to explore the different applications of DL that are used in the power systems and smart grid load forecasting and shows the use of convolutional neural network CNN with k-means algorithm had a great percentage of reduction in terms of RMSE.
Abstract: The utility industry has invested widely in smart grid (SG) over the past decade. They considered it the future electrical grid while the information and electricity are delivered in two-way flow. SG has many Artificial Intelligence (AI) applications such as Artificial Neural Network (ANN), Machine Learning (ML) and Deep Learning (DL). Recently, DL has been a hot topic for AI applications in many fields such as time series load forecasting. This paper introduces the common algorithms of DL in the literature applied to load forecasting problems in the SG and power systems. The intention of this survey is to explore the different applications of DL that are used in the power systems and smart grid load forecasting. In addition, it compares the accuracy results RMSE and MAE for the reviewed applications and shows the use of convolutional neural network CNN with k-means algorithm had a great percentage of reduction in terms of RMSE.

164 citations

Journal ArticleDOI
TL;DR: Novel electricity load scheduling algorithms which jointly consider the load scheduling for appliances and the energy trading using EVs, and a tiered billing scheme that can control the electricity rates for customers according to their different energy consumption levels are proposed.
Abstract: Electric vehicles (EVs) will play an important role in the future smart grid because of their capabilities of storing electrical energy in their batteries during off-peak hours and supplying the stored energy to the power grid during peak hours. In this paper, we consider a power system with an aggregator and multiple customers with EVs and propose novel electricity load scheduling algorithms which, unlike previous works, jointly consider the load scheduling for appliances and the energy trading using EVs. Specifically, we allow customers to determine how much energy to purchase from or to sell to the aggregator while taking into consideration the load demands of their residential appliances and the associated electricity bill. We propose two different approaches: a collaborative and a non-collaborative approach. In the collaborative approach, we develop an optimal distributed load scheduling algorithm that maximizes the social welfare of the power system. In the non-collaborative approach, we model the energy scheduling problem as a non-cooperative game among self-interested customers, where each customer determines its own load scheduling and energy trading to maximize its own profit. In order to resolve the unfairness between heavy and light customers in the non-collaborative approach, we propose a tiered billing scheme that can control the electricity rates for customers according to their different energy consumption levels. In both approaches, we also consider the uncertainty in the load demands, with which customers' actual energy consumption may vary from the scheduled energy consumption. To study the impact of the uncertainty, we use the worst-case-uncertainty approach and develop distributed load scheduling algorithms that provide the guaranteed minimum performances in uncertain environments. Subsequently, we show when energy trading leads to an increase in the social welfare and we determine what are the customers' incentives to participate in the energy trading in various usage scenarios including practical environments with uncertain load demands.

164 citations

Journal ArticleDOI
TL;DR: This paper investigates CCPAs in smart grid and shows that an adversary can carefully synthesize a false data injection attack vector based on phasor measurement unit (PMU) measurements to neutralize the impact of physical attack vector, such that CCPAs could circumvent bad data detection without being detected.
Abstract: Smart grid, as one of the most critical infrastructures, is vulnerable to a wide variety of cyber and/or physical attacks. Recently, a new category of threats to smart grid, named coordinated cyber-physical attacks (CCPAs), are emerging. A key feature of CCPAs is to leverage cyber attacks to mask physical attacks which can cause power outages and potentially trigger cascading failures. In this paper, we investigate CCPAs in smart grid and show that an adversary can carefully synthesize a false data injection attack vector based on phasor measurement unit (PMU) measurements to neutralize the impact of physical attack vector, such that CCPAs could circumvent bad data detection without being detected. Specifically, we present two potential CCPAs, namely replay and optimized CCPAs, respectively, and analyze the adversary’s required capability to construct them. Based on the analytical results, countermeasures are proposed to detect the two kinds of CCPAs, through known-secure PMU measurement verification (in the cyber space) and online tracking of the power system equivalent impedance (in the physical space), respectively. The implementation of CCPAs in smart grid and the effectiveness of countermeasures are demonstrated by using an illustrative 4-bus power system and the IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-bus test power systems.

164 citations

Journal ArticleDOI
TL;DR: This paper presents the design and development of a hardware-based laboratory smart grid test-bed, developed at the Energy Systems Research Laboratory, Florida International University, which provides a platform for investigation of many challenging aspects of a real smart power system.
Abstract: This paper presents the design and development of a hardware-based laboratory smart grid test-bed. This system is developed at the Energy Systems Research Laboratory, Florida International University. The hardware/software based system includes implementation of control strategies for generating stations, and power transfer to programmable loads in a laboratory scale of up to 35 kilowatts in ac power and 36 kW in renewable sources and energy storages. Appropriate software was developed to monitor all system parameters as well as operate and control the various interconnected components in varying connectivity architectures. The interconnection of alternate energy such as wind emulators, PV arrays, and fuel cell emulators are implemented, studied and integrated into this system. Educational experiences were drawn during the design and system development of this laboratory-based smart grid. The real-time operation and analysis capability provides a platform for investigation of many challenging aspects of a real smart power system. The design, development, and hardware setup of this laboratory is presented here in Part I of this paper. This includes component development, hardware implementation, and control and communication capabilities. Part II of the paper presents the implementation of the monitoring, control, and protection system of the whole setup with detailed experimental and simulation results.

164 citations

Journal ArticleDOI
08 Mar 2018-Energies
TL;DR: This study explores the state of the art of computationally intelligent methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system.
Abstract: Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand management.

164 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Wireless
133.4K papers, 1.9M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,334
20223,167
20212,356
20202,968
20193,278