scispace - formally typeset
Search or ask a question
Topic

Smart grid

About: Smart grid is a research topic. Over the lifetime, 37536 publications have been published within this topic receiving 627844 citations. The topic is also known as: intelligent grid.


Papers
More filters
Journal ArticleDOI
15 Mar 2016
TL;DR: Potential contributions that cyber-physical systems can make to smart grids, as well as the challenges that smart grids present to cyber- physical systems are outlined.
Abstract: Smart grids are electric networks that employ advanced monitoring, control, and communication technologies to deliver reliable and secure energy supply, enhance operation efficiency for generators and distributors, and provide flexible choices for prosumers. Smart grids are a combination of complex physical network systems and cyber systems that face many technological challenges. In this paper, we will first present an overview of these challenges in the context of cyber–physical systems. We will then outline potential contributions that cyber–physical systems can make to smart grids, as well as the challenges that smart grids present to cyber–physical systems. Finally, implications of current technological advances to smart grids are outlined.

487 citations

Journal ArticleDOI
TL;DR: This paper aims to present some of the most representative threats to the smart home/smart grid environment and presents promising security countermeasures with respect to the identified specific security goals for each presented scenario.
Abstract: The electricity industry is now at the verge of a new era—an era that promises, through the evolution of the existing electrical grids to smart grids, more efficient and effective power management, better reliability, reduced production costs, and more environmentally friendly energy generation. Numerous initiatives across the globe, led by both industry and academia, reflect the mounting interest around not only the enormous benefits but also the great risks introduced by this evolution. This paper focuses on issues related to the security of the smart grid and the smart home, which we present as an integral part of the smart grid. Based on several scenarios, we aim to present some of the most representative threats to the smart home/smart grid environment. The threats detected are categorized according to specific security goals set for the smart home/smart grid environment, and their impact on the overall system security is evaluated. A review of contemporary literature is then conducted with the aim of presenting promising security countermeasures with respect to the identified specific security goals for each presented scenario. An effort to shed light on open issues and future research directions concludes this paper.

484 citations

Journal ArticleDOI
TL;DR: Simulation result shows that the energy scheduling of SAs and other appliances can be determined simultaneously using the proposed CP formulation, and its major advantage is that the overall DR optimization problem remains to be convex and therefore the solution can be found efficiently.
Abstract: Demand response (DR) is very important in the future smart grid, aiming to encourage consumers to reduce their demand during peak load hours. However, if binary decision variables are needed to specify start-up time of a particular appliance, the resulting mixed integer combinatorial problem is in general difficult to solve. In this paper, we study a versatile convex programming (CP) DR optimization framework for the automatic load management of various household appliances in a smart home. In particular, an L1 regularization technique is proposed to deal with schedule-based appliances (SAs), for which their on/off statuses are governed by binary decision variables. By relaxing these variables from integer to continuous values, the problem is reformulated as a new CP problem with an additional L1 regularization term in the objective. This allows us to transform the original mixed integer problem into a standard CP problem. Its major advantage is that the overall DR optimization problem remains to be convex and therefore the solution can be found efficiently. Moreover, a wide variety of appliances with different characteristics can be flexibly incorporated. Simulation result shows that the energy scheduling of SAs and other appliances can be determined simultaneously using the proposed CP formulation.

481 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the critical scientific challenges facing the development of advanced batteries, various unique attributes of nanostructures or nano-architectures applicable to lithium-ion and lithium-air batteries, the latest developments in novel synthesis and fabrication procedures, the unique capabilities of some powerful, in situ characterization techniques vital to unraveling the mechanisms of charge and mass transport processes associated with battery performance, and the outlook for future-generation batteries that exploit nanoscale materials for significantly improved performance to meet the everincreasing demands of emerging technologies.
Abstract: The urgency for clean and secure energy has stimulated a global resurgence in searching for advanced electrical energy storage systems. For now and the foreseeable future, batteries remain the most promising electrical energy storage systems for many applications, from portable electronics to emerging technologies such as electric vehicles and smart grids, by potentially offering significantly improved performance, energy efficiencies, reliability, and energy security while also permitting a drastic reduction in fuel consumption and emissions. The energy and power storage characteristics of batteries critically impact the commercial viability of these emerging technologies. For example, the realization of electric vehicles hinges on the availability of batteries with significantly improved energy and power density, durability, and reduced cost. Further, the design, performance, portability, and innovation of many portable electronics are limited severely by the size, power, and cycle life of the existing batteries. Creation of nanostructured electrode materials represents one of the most attractive strategies to dramatically enhance battery performance, including capacity, rate capability, cycling life, and safety. This review aims at providing the reader with an understanding of the critical scientific challenges facing the development of advanced batteries, various unique attributes of nanostructures or nano-architectures applicable to lithium-ion and lithium-air batteries, the latest developments in novel synthesis and fabrication procedures, the unique capabilities of some powerful, in situ characterization techniques vital to unraveling the mechanisms of charge and mass transport processes associated with battery performance, and the outlook for future-generation batteries that exploit nanoscale materials for significantly improved performance to meet the ever-increasing demands of emerging technologies.

480 citations

Journal ArticleDOI
TL;DR: This paper presents mathematical optimization models of residential energy hubs which can be readily incorporated into automated decision making technologies in smart grids, and can be solved efficiently in a real-time frame to optimally control all major residential energy loads, storage and production components while properly considering the customer preferences and comfort level.
Abstract: This paper presents mathematical optimization models of residential energy hubs which can be readily incorporated into automated decision making technologies in smart grids, and can be solved efficiently in a real-time frame to optimally control all major residential energy loads, storage and production components while properly considering the customer preferences and comfort level. Novel mathematical models for major household demand, i.e., fridge, freezer, dishwasher, washer and dryer, stove, water heater, hot tub, and pool pumps are formulated. Also, mathematical models of other components of a residential energy system including lighting, heating, and air-conditioning are developed, and generic models for solar PV panels and energy storage/generation devices are proposed. The developed mathematical models result in Mixed Integer Linear Programming (MILP) optimization problems with the objective functions of minimizing energy consumption, total cost of electricity and gas, emissions, peak load, and/or any combination of these objectives, while considering end-user preferences. Several realistic case studies are carried out to examine the performance of the mathematical model, and experimental tests are carried out to find practical procedures to determine the parameters of the model. The application of the proposed model to a real household in Ontario, Canada is presented for various objective functions. The simulation results show that savings of up to 20% on energy costs and 50% on peak demand can be achieved, while maintaining the household owner's desired comfort levels.

478 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Wireless
133.4K papers, 1.9M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,334
20223,167
20212,356
20202,968
20193,278