scispace - formally typeset
Search or ask a question
Topic

Smart grid

About: Smart grid is a research topic. Over the lifetime, 37536 publications have been published within this topic receiving 627844 citations. The topic is also known as: intelligent grid.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array is investigated.

289 citations

Journal ArticleDOI
01 Dec 2016
TL;DR: In this paper, the authors introduce Smart Grid and associated technical, environmental and socioeconomic, and other non-tangible benefits to society, and articulates the need for the concept and the fact that it is a dynamic interactive, real-time infrastructure that responds to the challenges of designing and building the power system of the future, rather than being simply a marketing term.
Abstract: This presentation introduces Smart Grid and associated technical, environmental and socio-economic, and other non-tangible benefits to society, and articulates the need for the concept and the fact that it is a dynamic interactive, real-time infrastructure that responds to the challenges of designing and building the power system of the future, rather than being simply a marketing term. To illustrate the diversity of terminology, we compare an Electric Power Research Institute (EPRI) definition with that suggested by a study group of the International Electrotechnical Commission (IEC). Next, a paper sponsored by the Canadian Electricity Association (CEA) that cites three example definitions to highlight the diversity of views of Smart Grid is briefly reviewed. Early misconceptions and characterizations of Smart Grid are discussed as a prelude to addressing challenging issues that motivate developing and implementing related innovative technologies, products and services. We then discuss the potential promise of the Smart Grid, which is embedded in its often-cited attributes of efficiency, accommodating, quality focus, enabling and self-healing to name some. The presentation then addresses some of the often-cited impediments to accepting Smart Grid which are based on concerns and issues confronting its forward progress, adoption and acceptance. Distribution Automation (DA) and embedded intelligence are discussed emphasizing self-healing, optimizing operation and facilitating recreation and recovery from abnormal events. Functional and integration requirements of Distributed Energy Resources (DER,) are detailed. Smart Consumption Infrastructure elements of Distribution Management Systems (DMS,) Automated Metering Infrastructure (AMI,) Smart Homes (SH), and Smart Appliances (SA,) are discussed. We discuss smart grid activities in China, India, and the development of a Smart Grid roadmap for the US State of Kentucky. The approaches of each of these cases reflect the diversity of policy initiatives in these jurisdictions. State of the art reviews of distribution network active management and future development trends in technologies and methods, where centralized and decentralized management frameworks and applying agent-based coordination are discussed. A review of smart home technologies and the goals of an energy management system (SHEMS) are also discussed.

289 citations

Journal ArticleDOI
TL;DR: A new supplementary load frequency control (LFC) method by use of a number of both the EVs and the HPWHs as controllable loads is proposed, shown by numerical simulations conducted on the power system model with a large integration of wind power generation and photovoltaic generation.
Abstract: A large integration of renewable energy sources such as wind power generation and photovoltaic generation causes some problems in power systems, e.g., distribution voltage rise and frequency fluctuation. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to a high cost of the BESS, an application of controllable loads such as electric vehicle (EV) and heat pump water heater (HPWH) to the power system control is considered in this paper for reduction of the required capacity of the BESS. This paper proposes a new supplementary load frequency control (LFC) method by use of a number of both the EVs and the HPWHs as controllable loads. The effectiveness of the proposed LFC method is shown by numerical simulations conducted on the power system model with a large integration of wind power generation and photovoltaic generation.

289 citations

Journal ArticleDOI
TL;DR: The design and implementation of a single-phase on-board bidirectional plug-in electric vehicle (PEV) charger that can provide reactive power support to the utility grid in addition to charging the vehicle battery is presented.
Abstract: This paper presents the design and implementation of a single-phase on-board bidirectional plug-in electric vehicle (PEV) charger that can provide reactive power support to the utility grid in addition to charging the vehicle battery. The topology consists of two-stages: a full-bridge ac-dc boost converter; and a half-bridge bidirectional dc-dc converter. The charger operates in two quadrants in the active-reactive power (PQ) power plane with five different operation modes (i.e., charging-only, charging-capacitive, charging-inductive, capacitive-only, and inductive-only). This paper also presents a unified controller to follow utility PQ commands in a smart grid environment. The cascaded two-stage system controller receives active and reactive power commands from the grid, and results in line current and battery charging current references while also providing a stable dynamic response. The vehicle's battery is not affected during reactive power operation in any of the operation modes. Testing the unified system controller with a 1.44 kVA experimental charger design demonstrates the successful implementation of reactive power support functionality of PEVs for future smart grid applications.

288 citations

Proceedings ArticleDOI
01 Jan 2014
TL;DR: This survey article expands fog computing concept to the decentralized smart building control, recognizes cloudlets as special case of fog computing, and relates it to the software defined networks (SDN) scenarios.
Abstract: Cloud services to smart things face latency and intermittent connectivity issues. Fog devices are positioned between cloud and smart devices. Their high speed Internet connection to the cloud, and physical proximity to users, enable real time applications and location based services, and mobility support. Cisco promoted fog computing concept in the areas of smart grid, connected vehicles and wireless sensor and actuator networks. This survey article expands this concept to the decentralized smart building control, recognizes cloudlets as special case of fog computing, and relates it to the software defined networks (SDN) scenarios. Our literature review identifies a handful number of articles. Cooperative data scheduling and adaptive traffic light problems in SDN based vehicular networks, and demand response management in macro station and micro-grid based smart grids are discussed. Security, privacy and trust issues, control information overhead and network control policies do not seem to be studied so far within the fog computing concept.

287 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Wireless
133.4K papers, 1.9M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,334
20223,167
20212,356
20202,968
20193,278