scispace - formally typeset
Search or ask a question
Topic

Smart grid

About: Smart grid is a research topic. Over the lifetime, 37536 publications have been published within this topic receiving 627844 citations. The topic is also known as: intelligent grid.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel automation architecture which supports distributed multiagent intelligence, interoperability, and configurability and enables efficient simulation of distributed automation systems is reported on.
Abstract: Universal, intelligent, and multifunctional devices controlling power distribution and measurement will become the enabling technology of the Smart Grid ICT. In this paper, we report on a novel automation architecture which supports distributed multiagent intelligence, interoperability, and configurability and enables efficient simulation of distributed automation systems. The solution is based on the combination of IEC 61850 object-based modeling and interoperable communication with IEC 61499 function block executable specification. Using the developed simulation environment, we demonstrate the possibility of multiagent control to achieve self-healing grid through collaborative fault location and power restoration.

256 citations

Journal ArticleDOI
TL;DR: An approach based on the mixed-integer linear programming paradigm, which is able to provide an optimal solution in terms of tasks power consumption and management of renewable resources, is developed and yields an optimal task scheduling under dynamic electrical constraints.
Abstract: The optimization of energy consumption, with consequent costs reduction, is one of the main challenges in present and future smart grids. Of course, this has to occur keeping the living comfort for the end-user unchanged. In this work, an approach based on the mixed-integer linear programming paradigm, which is able to provide an optimal solution in terms of tasks power consumption and management of renewable resources, is developed. The proposed algorithm yields an optimal task scheduling under dynamic electrical constraints, while simultaneously ensuring the thermal comfort according to the user needs. On purpose, a suitable thermal model based on heat-pump usage has been considered in the framework. Some computer simulations using real data have been performed, and obtained results confirm the efficiency and robustness of the algorithm, also in terms of achievable cost savings.

256 citations

Book ChapterDOI
TL;DR: Simulation results show that the proposed real-time pricing scheme can effectively shave the energy usage peaks, reduce the retailer's cost, and improve the payoffs of the users.
Abstract: This paper proposes a real-time pricing scheme that reduces the peak-to-average load ratio through demand response management in smart grid systems. The proposed scheme solves a two-stage optimization problem. On one hand, each user reacts to prices announced by the retailer and maximizes its payoff, which is the difference between its quality-of-usage and the payment to the retailer. On the other hand, the retailer designs the real-time prices in response to the forecasted user reactions to maximize its profit. In particular, each user computes its optimal energy consumption either in closed forms or through an efficient iterative algorithm as a function of the prices. At the retailer side, we develop a Simulated-Annealing-based Price Control (SAPC) algorithm to solve the non-convex price optimization problem. In terms of practical implementation, the users and the retailer interact with each other via a limited number of message exchanges to find the optimal prices. By doing so, the retailer can overcome the uncertainty of users' responses, and users can determine their energy usage based on the actual prices to be used. Our simulation results show that the proposed real-time pricing scheme can effectively shave the energy usage peaks, reduce the retailer's cost, and improve the payoffs of the users.

254 citations

Journal ArticleDOI
20 Sep 2018-Energies
TL;DR: This paper presents a comprehensive literature survey on the topic of LFC, and investigates the used LFC models for diverse configurations of power systems and proposes proposed control strategies for LFC for both conventional and future smart power systems.
Abstract: Power systems are the most complex systems that have been created by men in history To operate such systems in a stable mode, several control loops are needed Voltage frequency plays a vital role in power systems which need to be properly controlled To this end, primary and secondary frequency control loops are used to control the frequency of the voltage in power systems Secondary frequency control, which is called Load Frequency Control (LFC), is responsible for maintaining the frequency in a desirable level after a disturbance Likewise, the power exchanges between different control areas are controlled by LFC approaches In recent decades, many control approaches have been suggested for LFC in power systems This paper presents a comprehensive literature survey on the topic of LFC In this survey, the used LFC models for diverse configurations of power systems are firstly investigated and classified for both conventional and future smart power systems Furthermore, the proposed control strategies for LFC are studied and categorized into different control groups The paper concludes with highlighting the research gaps and presenting some new research directions in the field of LFC

253 citations

Journal ArticleDOI
TL;DR: This paper studies the general problem of blind false data injection attacks using the principal component analysis approximation method without the knowledge of Jacobian matrix and the assumption regarding the distribution of state variables, and is proven to be approximately stealthy.
Abstract: Accurate state estimation is of paramount importance to maintain normal operations of smart power grids. However, recent research shows that carefully produced attacks with the knowledge of the grid topology, i.e., Jacobian matrix, can bypass the bad data detection (BDD) system. The BDD is used to ensure the integrity of state estimation to filter faulty measurements introduced by device malfunctions or malicious attacks. However, to construct the false data injection attack vectors, a common assumption in most prior works on false data injection attacks is that the attacker has complete knowledge about the power grid topology and transmission-line admittances. By contrast, this paper studies the general problem of blind false data injection attacks using the principal component analysis approximation method without the knowledge of Jacobian matrix and the assumption regarding the distribution of state variables. The proposed attack is proven to be approximately stealthy. 1 The performance of the proposed attack is analyzed. Simulations confirm the performance of the proposed method.

253 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Wireless
133.4K papers, 1.9M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,334
20223,167
20212,356
20202,968
20193,278