scispace - formally typeset
Search or ask a question
Topic

Smart grid

About: Smart grid is a research topic. Over the lifetime, 37536 publications have been published within this topic receiving 627844 citations. The topic is also known as: intelligent grid.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors argue that by combining wide area power generation and decentralised power generation, it is possible to address the crucial issue of renewable generation in a comprehensive as well as in a technologically and economically viable manner.

243 citations

Journal ArticleDOI
TL;DR: This paper proposes online algorithms for the real-time energy management of the two cooperative microgrids each with individual renewable energy generator and ESS and presents one method to extend the proposed online algorithms to the general case of more than twomicrogrids based on a clustering approach.
Abstract: Microgrids are key components of future smart grids, which integrate distributed renewable energy generators to efficiently serve the load locally. However, the intermittent nature of renewable energy generations hinders the reliable operation of microgrids. Besides the commonly adopted methods such as deploying energy storage system (ESS) and supplementary fuel generator to address the intermittency issue, energy cooperation among microgrids by enabling their energy exchange for sharing is an appealing new solution. In this paper, we consider the energy management problem for two cooperative microgrids each with individual renewable energy generator and ESS. First, by assuming that the microgrids’ renewable energy generation/load amounts are perfectly known ahead of time, we solve the off-line energy management problem optimally. Based on the obtained solution, we study the impacts of microgrids’ energy cooperation and their ESSs on the total energy cost. Next, inspired by the off-line optimization solution, we propose online algorithms for the real-time energy management of the two cooperative microgrids. It is shown via simulations that the proposed online algorithms perform well in practice, have low complexity, and are also valid under arbitrary realizations of renewable energy generations/loads. Finally, we present one method to extend our proposed online algorithms to the general case of more than two microgrids based on a clustering approach.

243 citations

Journal ArticleDOI
TL;DR: This architecture can encapsulate the system functionality, assure the interoperability between various components, allow the integration of different energy sources, and ease maintenance and upgrading, and allows seamless integration of diverse techniques for online operation control, optimal scheduling, and dynamic pricing.
Abstract: This paper presents a system architecture for load management in smart buildings which enables autonomous demand side load management in the smart grid. Being of a layered structure composed of three main modules for admission control, load balancing, and demand response management, this architecture can encapsulate the system functionality, assure the interoperability between various components, allow the integration of different energy sources, and ease maintenance and upgrading. Hence it is capable of handling autonomous energy consumption management for systems with heterogeneous dynamics in multiple time-scales and allows seamless integration of diverse techniques for online operation control, optimal scheduling, and dynamic pricing. The design of a home energy manager based on this architecture is illustrated and the simulation results with Matlab/Simulink confirm the viability and efficiency of the proposed framework.

243 citations

BookDOI
01 Jan 2008
TL;DR: In this article, the authors introduce the principles of electrical power control, overview of power electronics converters and control quality problems in smart networks, and case studies in Distributed Electrical Power System High Frequency AC Power Distribution Platforms Integration of Distributed Generation with Electrical Power Systems Active Power Quality Controllers Energy Storage Systems Variable and Adjustable Speed Generation Systems Grid Integration of Wind Energy Systems Grid integration of Photovoltaics and Fuel Cells
Abstract: Introduction Principles of Electrical Power Control Overview of Power Electronics Converters and Controls Quality Problems in Smart Networks EMC Cases in Distributed Electrical Power System High Frequency AC Power Distribution Platforms Integration of Distributed Generation with Electrical Power System Active Power Quality Controllers Energy Storage Systems Variable and Adjustable Speed Generation Systems Grid Integration of Wind Energy Systems Grid Integration of Photovoltaics and Fuel Cells

243 citations

Journal ArticleDOI
TL;DR: A multiperiod artificial bee colony optimization algorithm is implemented for economic dispatch considering generation, storage, and responsive load offers and shows cost reduction, convergence speed increase, and the remarkable improvement of efficiency and accuracy under uncertain conditions.
Abstract: The optimal operation programming of electrical systems through the minimization of the production cost and the market clearing price, as well as the better utilization of renewable energy resources, has attracted the attention of many researchers. To reach this aim, energy management systems (EMSs) have been studied in many research activities. Moreover, a demand response (DR) expands customer participation to power systems and results in a paradigm shift from conventional to interactive activities in power systems due to the progress of smart grid technology. Therefore, the modeling of a consumer characteristic in the DR is becoming a very important issue in these systems. The customer information as the registration and participation information of the DR is used to provide additional indexes for evaluating the customer response, such as consumer's information based on the offer priority, the DR magnitude, the duration, and the minimum cost of energy. In this paper, a multiperiod artificial bee colony optimization algorithm is implemented for economic dispatch considering generation, storage, and responsive load offers. The better performance of the proposed algorithm is shown in comparison with the modified conventional EMS, and its effectiveness is experimentally validated over a microgrid test bed. The obtained results show cost reduction (by around 30%), convergence speed increase, and the remarkable improvement of efficiency and accuracy under uncertain conditions. An artificial neural network combined with a Markov chain (ANN-MC) approach is used to predict nondispatchable power generation and load demand considering uncertainties. Furthermore, other capabilities such as extendibility, reliability, and flexibility are examined about the proposed approach.

243 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Wireless
133.4K papers, 1.9M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,334
20223,167
20212,356
20202,968
20193,278