scispace - formally typeset
Search or ask a question
Topic

Smart grid

About: Smart grid is a research topic. Over the lifetime, 37536 publications have been published within this topic receiving 627844 citations. The topic is also known as: intelligent grid.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of recent developments in modeling and control methods of microgrid as well as presenting the reason towards incorporating MG into the existing grid are presented.
Abstract: A microgrid (MG) is a building block of future smart grid, it can be defined as a network of low voltage power generating units, storage devices and loads. System of systems (SoS) is another concept involving large scale integration of various systems. In this paper, we provide an overview of recent developments in modeling and control methods of microgrid as well as presenting the reason towards incorporating MG into the existing grid. Various SoS control strategies when applied to MG are discussed.

222 citations

Journal ArticleDOI
TL;DR: A survey of the literature is provided and a classification of key techniques and benchmarks are developed that can be used to advance the state of the art in this space to avoid users being stranded.
Abstract: Along with the development of smart grids, the wide adoption of electric vehicles (EVs) is seen as a catalyst to the reduction of $\hbox{CO}_{2} $ emissions and more intelligent transportation systems. In particular, EVs augment the grid with the ability to store energy at some points in the network and give it back at others and, therefore, help optimize the use of energy from intermittent renewable energy sources and let users refill their cars in a variety of locations. However, a number of challenges need to be addressed if such benefits are to be achieved. On the one hand, given their limited range and costs involved in charging EV batteries, it is important to design algorithms that will minimize costs and, at the same time, avoid users being stranded. On the other hand, collectives of EVs need to be organized in such a way as to avoid peaks on the grid that may result in high electricity prices and overload local distribution grids. In order to meet such challenges, a number of technological solutions have been proposed. In this paper, we focus on those that utilize artificial intelligence techniques to render EVs and the systems that manage collectives of EVs smarter. In particular, we provide a survey of the literature and identify the commonalities and key differences in the approaches. This allows us to develop a classification of key techniques and benchmarks that can be used to advance the state of the art in this space.

222 citations

Journal ArticleDOI
TL;DR: In this article, a virtual synchronous machine (VSM) controller is embedded in the controller of synchronous converters to provide close imitation of the synchronous machines in order to provide a unified interface for smart grid integration.
Abstract: Power systems are going through a paradigm change from centralized generation to distributed generation and further on to smart grids. More and more renewable-energy sources, electric vehicles, energy storage systems, and so forth are being connected to power systems through power electronic converters. Moreover, the majority of loads are expected to connect to the grid through power electronic converters as well. This article shows that these converters, either on the supply side or on the load side, can all be controlled to behave like virtual synchronous machines (VSMs) and possess the dynamics of synchronous machines, providing a unified interface for smart grid integration. Synchroconverter technology and its developments are the focus of this article because the mathematical model of synchronous machines is embedded in the controller of synchronverters to provide close imitation.

222 citations

Journal ArticleDOI
TL;DR: This article presents a mobility-aware hierarchical MEC framework for green and low-latency IoT, and deploys a game theoretic approach for computation offloading in order to optimize the utility of the service providers while also reducing the energy cost and the task execution time of the smart devices.
Abstract: IoT, a heterogeneous interconnection of smart devices, is a great platform to develop novel mobile applications. Resource constrained smart devices, however, often become the bottlenecks to fully realize such developments, especially when it comes to intensive-computation-oriented and low-latency-demanding applications. MEC is a promising approach to address such challenges. In this article, we focus on MEC applications for IoT, and address energy efficiency as well as offloading performance of such applications in terms of end-user experience. In this regard, we present a mobility-aware hierarchical MEC framework for green and low-latency IoT. We deploy a game theoretic approach for computation offloading in order to optimize the utility of the service providers while also reducing the energy cost and the task execution time of the smart devices. Numerical results indicate that the proposed scheme does brings significant enhancement in both energy efficiency and latency performance of MEC applications for IoT.

222 citations

Patent
Jeffrey D. Taft1
11 Feb 2009
TL;DR: In this article, a smart grid for improving the management of a power utility grid is provided, which includes using sensors in various portions of the power grid, using communications and computing technology, such as additional bus structures, to upgrade an electric power grid so that it can operate more efficiently and reliably and support additional services to consumers.
Abstract: A smart grid for improving the management of a power utility grid is provided. The smart grid as presently disclosed includes using sensors in various portions of the power utility grid, using communications and computing technology, such as additional bus structures, to upgrade an electric power grid so that it can operate more efficiently and reliably and support additional services to consumers. The smart grid may include distributed intelligence in the power utility grid (separate from the control center intelligence) including devices that generate data in different sections of the grid, analyze the generated data, and automatically modify the operation of a section of the power grid.

222 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Wireless
133.4K papers, 1.9M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,334
20223,167
20212,356
20202,968
20193,278