scispace - formally typeset
Search or ask a question
Topic

Smart material

About: Smart material is a research topic. Over the lifetime, 3704 publications have been published within this topic receiving 74280 citations. The topic is also known as: intelligent material & responsive material.


Papers
More filters
Journal ArticleDOI
Ryo Yoshida1
TL;DR: The self-oscillating polymer is composed of a poly(N-isopropylacrylamide) network in which the catalyst for the BZ reaction is covalently immobilized as mentioned in this paper.
Abstract: So far stimuli-responsive polymer gels and their application to smart materials have been widely studied; this research has contributed to progress in gel science and engineering. For their development as a novel biomimetic polymer, studies of polymers with an autonomous self-oscillating function have been carried out since the first reports in 1996. The development of novel self-oscillating polymers and gels have been successful utilizing the oscillating reaction, called the Belousov-Zhabotinsky (BZ) reaction, which is recognized as a chemical model for understanding several autonomous phenomena in biological systems. The self-oscillating polymer is composed of a poly(N-isopropylacrylamide) network in which the catalyst for the BZ reaction is covalently immobilized. In the presence of the reactants, the polymer undergoes spontaneous cyclic soluble-insoluble changes or swelling-deswelling changes (in the case of gel) without any on-off switching of external stimuli. Potential applications of the self-socillating polymers and gels include several kinds of functional material systems, such as biomimetic actuators and mass transport surface.

309 citations

Journal ArticleDOI
TL;DR: The means by which aligned porous structures and nacre mimetic materials obtainable through recently developed freeze-casting techniques and low-dimensional building blocks can facilitate material functionality across multiple fields of application, including energy storage and conversion, environmental remediation, thermal management, and smart materials, are discussed.
Abstract: Freeze casting, also known as ice templating, is a particularly versatile technique that has been applied extensively for the fabrication of well-controlled biomimetic porous materials based on ceramics, metals, polymers, biomacromolecules, and carbon nanomaterials, endowing them with novel properties and broadening their applicability. The principles of different directional freeze-casting processes are described and the relationships between processing and structure are examined. Recent progress in freeze-casting assisted assembly of low dimensional building blocks, including graphene and carbon nanotubes, into tailored micro- and macrostructures is then summarized. Emerging trends relating to novel materials as building blocks and novel freeze-cast geometries-beads, fibers, films, complex macrostructures, and nacre-mimetic composites-are presented. Thereafter, the means by which aligned porous structures and nacre mimetic materials obtainable through recently developed freeze-casting techniques and low-dimensional building blocks can facilitate material functionality across multiple fields of application, including energy storage and conversion, environmental remediation, thermal management, and smart materials, are discussed.

307 citations

Journal ArticleDOI
TL;DR: In this article, a new class of magnetic material with a unique combination of remarkable properties is presented, which reveals a uniform magnetic anisotropy with an unexpected switching behavior induced by their spherical shape.
Abstract: Thin-film technology is widely implemented in numerous applications1. Although flat substrates are commonly used, we report on the advantages of using curved surfaces as a substrate. The curvature induces a lateral film-thickness variation that allows alteration of the properties of the deposited material2,3. Based on this concept, a variety of implementations in materials science can be expected. As an example, a topographic pattern formed of spherical nanoparticles4,5 is combined with magnetic multilayer film deposition. Here we show that this combination leads to a new class of magnetic material with a unique combination of remarkable properties: The so-formed nanostructures are monodisperse, magnetically isolated, single-domain, and reveal a uniform magnetic anisotropy with an unexpected switching behaviour induced by their spherical shape. Furthermore, changing the deposition angle with respect to the particle ensemble allows tailoring of the orientation of the magnetic anisotropy, which results in tilted nanostructure material.

307 citations

Journal ArticleDOI
TL;DR: The progress and new developments in the field of light‐responsive hydrogels are elaborated by first introducing the relevant photochemistries before discussing selected applications in detail.
Abstract: Hydrogels are the most relevant biochemical scaffold due to their tunable properties, inherent biocompatibility, and similarity with tissue and cell environments. Over the past decade, hydrogels have developed from static materials to "smart" responsive materials adapting to various stimuli, such as pH, temperature, chemical, electrical, or light. Light stimulation is particularly interesting for many applications because of the capability of contact-free remote manipulation of biomaterial properties and inherent spatial and temporal control. Moreover, light can be finely adjusted in its intrinsic properties, such as wavelength and intensity (i.e., the energy of an individual photon as well as the number of photons over time). Water is almost transparent for light in the photochemically relevant range (NIR-UV), thus hydrogels are well-suited scaffolds for light-responsive functionality. Hydrogels' chemical and physical variety combined with light responsiveness makes photoresponsive hydrogels ideal candidates for applications in several fields, ranging from biomaterials, medicine to soft robotics. Herein, the progress and new developments in the field of light-responsive hydrogels are elaborated by first introducing the relevant photochemistries before discussing selected applications in detail.

293 citations

Journal ArticleDOI
TL;DR: A review of the current materials available for 3D printing that enable the emergence of 4D printing, a "smart material" that responds in a programmed way to an external stimuli can be found in this paper.
Abstract: 3D printing will revolutionize the manufacturing industry. Significant advances in computer aided design, additive manufacturing and materials science have opened up the possibilities of self-assembly systems, self-healing and material property alterations. Printing layer by layer allows complex geometries to be built, previously difficult under conventional manufacturing routes. This paper is a review of the current materials available for 3D printing that enable the emergence of 4D printing, a ‘smart material’ that responds in a programmed way to an external stimuli. The outlook is towards potential space applications, in all areas including deployable structures, antennas and medical supplies.

282 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
86% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
Graphene
144.5K papers, 4.9M citations
83% related
Polymer
131.4K papers, 2.6M citations
83% related
Thin film
275.5K papers, 4.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023168
2022315
2021268
2020250
2019252
2018239