scispace - formally typeset
Search or ask a question
Topic

Smart material

About: Smart material is a research topic. Over the lifetime, 3704 publications have been published within this topic receiving 74280 citations. The topic is also known as: intelligent material & responsive material.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a robust miniature-reed check valve array is presented to overcome the fatigue and fabrication limitations observed in previous approaches, and the performance of this array in a smart material actuator is compared with a larger, single-reed valve design.
Abstract: A key element in developing high-performance smart material electrohydraulic actuators is the design of improved check valves for high-frequency fluid rectification. One method to create valves with fast frequency response is to replace the single-reed valves typically used in these systems with an array of miniature-reed valves. A robust miniature-reed design is presented to overcome the fatigue and fabrication limitations observed in previous approaches. The fluid–structure interaction between an individual valve and hydraulic fluid is modeled using the multiphysics software COMSOL; the results are validated with experimental testing on an array of miniature reeds. The performance of this array in a smart material actuator is compared with a larger, single-reed valve design. The miniature-reed array is shown to reliably rectify flow in the high-pressure and high-frequency environment of a smart material pump.

21 citations

Journal ArticleDOI
TL;DR: This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.
Abstract: We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets. In addition, due to the effective cooperation of multi-gradient and multi-scale hydrophilic spindle knots, the length of the three-phase contact line (TCL) can be longer, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.

21 citations

Proceedings ArticleDOI
22 Apr 2002
TL;DR: The aim of the new concept presented is to provide a refined methodology in ground testing for verifying predictive modeling efforts, and to design sensor/actuator systems to actively control unwanted vibrations of an inflated space object.
Abstract: The focus of this work is to investigate the use of smart materials for vibration testing and control of inflated satellite components. Lightweight inflatable structures are a viable alternative in aerospace structure design. These structures, however, pose special problems in testing and in controlling vibrations due to their extremely lightweight, flexible, and high-damping properties. The smart materials offer the required flexibility with very high electromechanical coupling and, hence are logical elements for the use in the dynamics and control of inflated structures. The aim of the new concept presented in this work is to provide a refined methodology in ground testing for verifying predictive modeling efforts, and to design sensor/actuator systems to actively control unwanted vibrations of an inflated space object. Multiple sensors/actuators and modern state-space based controllers have been implemented to study the various performance of the proposed concept.

21 citations

Journal ArticleDOI
TL;DR: A dual-responsive smart surface is constructed by combining photo-responsive SP and thermo-responsive NiPAAm units for enhancing the efficiencies of cancer-cell capture and release.
Abstract: To overcome the low efficiency of single-responsive smart surfaces, we have constructed a dual-responsive smart surface - poly(spiropyran-co-N-isopropylacrylamide) (poly(SP-co-NiPAAm))-grafted silicon nanowire arrays - by combining photo-responsive SP and thermo-responsive NiPAAm units for enhancing the efficiencies of cancer-cell capture and release. These enhanced efficiencies probably originate from the binary cooperative effect of two responsive building units: NiPAAm units can decrease the steric hindrance between SP units during the isomerization while SP units can facilitate phase transition of NiPAAm units. This study provides a new strategy for designing smart materials and surfaces with efficient responsiveness for biomedical applications.

21 citations

Journal ArticleDOI
TL;DR: In this paper, a novel, dynamic vibration absorber is developed using an MRE with a self-sensing function and adaptability, which is instantaneously tuned to a dominant frequency extracted from the strain signal of the MRE.
Abstract: The magnetorheological elastomer (MRE) is known to belong to a class of smart materials whose elastic properties can be varied by an externally applied magnetic field. In addition to the property of the field-dependent stiffness change of the MRE, the electrical resistance of the composite is also changed by the induced strain, thereby providing a new self-sensing feature. In the present study, a novel, dynamic vibration absorber is developed using an MRE with a self-sensing function and adaptability. The natural frequency of the absorber is instantaneously tuned to a dominant frequency extracted from the strain signal of MRE. The damping performance test shows that the vibration of a system with one degree-of-freedom that is exposed to a nonstationary disturbance can be adequately reduced by the proposed frequency-tunable dynamic absorber without the use of external sensors.

21 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
86% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
Graphene
144.5K papers, 4.9M citations
83% related
Polymer
131.4K papers, 2.6M citations
83% related
Thin film
275.5K papers, 4.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023168
2022315
2021268
2020250
2019252
2018239