scispace - formally typeset
Search or ask a question
Topic

Smart material

About: Smart material is a research topic. Over the lifetime, 3704 publications have been published within this topic receiving 74280 citations. The topic is also known as: intelligent material & responsive material.


Papers
More filters
Journal ArticleDOI
01 May 2022-Polymers
TL;DR: In this article , the application of bistable morphing composites in energy harvesting is discussed and mathematical modeling of the dynamic behavior of these composite structures is explained, and the applications of artificial-intelligence techniques to optimize the design of Bistable structures and to predict their response under different actuating schemes are discussed.
Abstract: Bistable morphing composites have shown promising applications in energy harvesting due to their capabilities to change their shape and maintain two different states without any external loading. In this review article, the application of these composites in energy harvesting is discussed. Actuating techniques used to change the shape of a composite structure from one state to another is discussed. Mathematical modeling of the dynamic behavior of these composite structures is explained. Finally, the applications of artificial-intelligence techniques to optimize the design of bistable structures and to predict their response under different actuating schemes are discussed.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of using cellulose nanofibrils in stimuli-responsive materials is illustrated with highlights of preliminary results from magnetostrictive nanocellulose membranes actuated using magnetic fields.
Abstract: Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate both active and inactive roles in electronics and related devices. For example, these nanomaterials have been demonstrated to operate as substrates for flexible electronics and displays, to improve the efficiency of photovoltaics, to work as a component of magnetostrictive composites and to act as a suitable lithium ion battery separator membrane. A discussion and overview of additional potential applications and of previously published research using cellulose nanomaterials for these advanced applications is provided in this article. The concept of using cellulose nanofibrils in stimuli-responsive materials is illustrated with highlights of preliminary results from magnetostrictive nanocellulose membranes actuated using magnetic fields.

86 citations

Journal ArticleDOI
TL;DR: The electroactive hydrogel device, integrated into a microfluidic system, successfully demonstrated the practical application of smart materials for use in cell biology.
Abstract: The utility of electro-responsive smart materials has been limited by bubble generation (hydrolysis) during application of electrical fields and by biocompatibility issues. Here we describe the design of a device that overcomes these limitations by combining material properties, new design concepts, and microtechnology. 4-Hydroxybutyl acrylate (4-HBA) was used as a backbone hydrogel material, and its actuating behavior, bending force, and elasticity were extensively characterized as a function of size and acrylic acid concentration. To prevent bubble generation, the system was designed such that the hydrogel actuator could be operated at low driving voltages (<1.2 V). A microfluidic channel with an integrated electroactive hydrogel actuator was developed for sorting particles. This device could be operated in cell culture media, and the sorting capabilities were initially assessed by sorting droplets in an oil droplet emulsion. Biocompatibility was subsequently tested by sorting mouse embryoid bodies (mEBs) according to size. The sorted and collected mEBs maintained pluripotency, and selected mEBs successfully differentiated into three germ layers: endoderm, mesoderm, and ectoderm. The electroactive hydrogel device, integrated into a microfluidic system, successfully demonstrated the practical application of smart materials for use in cell biology.

86 citations

Journal ArticleDOI
05 May 2021
TL;DR: An off/on switchable EMI shielding material that can be tuned from EM wave transmission to shielding and vice versa by mechanical compression and decompression is presented in this article. But the authors do not consider the use of carbon nanoparticles.
Abstract: Summary Smart electromagnetic interference (EMI) shielding materials with tunable EM wave response characteristics are attractive for future EM devices. Here, we report an off/on switchable EMI shielding material that can be tuned from EM wave transmission to shielding and vice versa by mechanical compression and decompression. This smart material is prepared by filling conductive carbon nanoparticles into wood-derived lamellar carbon aerogel, showing reversible compressibility and strain-sensitive conductivity. The original aerogel has good impedance matching and low dielectric loss, allowing the EM wave to pass through. Mechanical compression enables the carbon nanoparticles to establish highly conductive pathways in the aerogel, which significantly increases the conductivity of aerogel and thus activates its EMI shielding performance. This function switch is reversible by repeatedly compressing and decompressing the aerogel. The availability of such a never-before-realized off/on switchable EMI shielding material provides an opportunity for the development of advanced smart EM devices.

86 citations

Journal ArticleDOI
TL;DR: In this paper, a review of hydrogen-bonded liquid crystalline polymers is presented, and potential future applications are discussed, including self-healing and recyclable properties.
Abstract: Hydrogen-bonded liquid crystalline polymers have emerged as promising "smart" supramolecular functional materials with stimuli-responsive, self-healing, and recyclable properties. The hydrogen bonds can either be used as chemically responsive (i.e., pH-responsive) or as dynamic structural (i.e., temperature-responsive) moieties. Responsiveness can be manifested as changes in shape, color, or porosity and as selective binding. The liquid crystalline self-organization gives the materials their unique responsive nanostructures. Typically, the materials used for actuators or optical materials are constructed using linear calamitic (rod-shaped) hydrogen-bonded complexes, while nanoporous materials are constructed from either calamitic or discotic (disk-shaped) complexes. The dynamic structural character of the hydrogen bond moieties can be used to construct self-healing and recyclable supramolecular materials. In this review, recent findings are summarized, and potential future applications are discussed.

85 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
86% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
Graphene
144.5K papers, 4.9M citations
83% related
Polymer
131.4K papers, 2.6M citations
83% related
Thin film
275.5K papers, 4.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023168
2022315
2021268
2020250
2019252
2018239