scispace - formally typeset
Search or ask a question

Showing papers on "Smoothelin published in 2019"


Journal ArticleDOI
TL;DR: It is hypothesized that SpA remodelling in human pregnancy is associated with VSMC dedifferentiation, initiated by uNK cell-derived growth factors, and tested the effect of different cell types and AGFs on VSMC differentiation.
Abstract: STUDY QUESTION Is vascular smooth muscle cell (VSMC) dedifferentiation a feature of uterine spiral artery (SpA) remodelling in early human pregnancy? SUMMARY ANSWER Remodelling of human uterine SpAs is associated with dedifferentiation of VSMCs and can be induced in vitro by uterine natural killer (uNK) cells and extravillous trophoblast cells (EVTs). WHAT IS KNOWN ALREADY Uterine SpAs undergo profound morphological changes in normal pregnancy with replacement of the musculoelastic arterial wall structure by fibrinoid containing EVTs. The fate of VSMCs in SpA remodelling is unknown; in guinea pig uterine artery VSMCs dedifferentiate, remain in the vessel wall and differentiate after parturition to restore the arterial wall. There is increasing evidence that uNK cells play a role in SpA remodelling. We hypothesized that SpA remodelling in human pregnancy is associated with VSMC dedifferentiation, initiated by uNK cell-derived growth factors. STUDY DESIGN, SIZE, DURATION Formalin fixed, paraffin embedded placental bed biopsies were immunostained for angiogenic growth factor (AGF) receptors and markers of VSMC differentiation. An in vitro model of SpA remodelling using chorionic plate arteries (CPAs) was used to test the effect of different cell types and AGFs on VSMC differentiation. PARTICIPANTS/MATERIALS, SETTING, METHODS Placental bed biopsies were immunostained for vascular endothelial growth factor receptors 1-3 (VEGF-R1, VEGF-R2, VEGF-R3), transforming growth factor beta 1 receptors I and II (TGF-βRI, TGF-βRII), interferon gamma receptors 1 and 2 (IFN-γR1, IFN-γR2), Tie2, α-smooth muscle actin (α-SMA), H-caldesmon (H-Cal), myosin heavy chain (MyHC), osteopontin and smoothelin. Staining intensity was assessed using a modified quickscore. Expression by VSMCs of the AGF receptors was confirmed by laser capture microdissection and real-time RT-PCR of non-remodelled SpAs, after laser removal of the endothelium. As an in vitro model, VSMC differentiation was assessed in CPAs by immunohistochemistry after culture in uNK cell-conditioned medium (CM), EVT-CM, uNK cell/EVT co-culture CM, Ang-1, Ang-2, IFN-γ, VEGF-A and VEGF-C, and after blocking of both Ang-1 and Ang-2 in uNK-CM. MAIN RESULTS AND THE ROLE OF CHANCE SpA VSMC expression of Tie-2 (P = 0.0007), VEGF-R2 (P = 0.005) and osteopontin (P = 0.0001) increased in partially remodelled SpAs compared with non-remodelled SpAs, while expression of contractile VSMC markers was reduced (α-SMA P < 0.0001, H-Cal P = 0.03, MyHC P = 0.03, smoothelin P = 0.0001). In the in vitro CPA model, supernatants from purified uNK cell (H-Cal P < 0.0001, MyHC P = 0.03, α-SMA P = 0.02, osteopontin P = 0.03), EVT (H-Cal P = 0.0006, MyHC P = 0.02, osteopontin P = 0.01) and uNK cell/EVT co-cultures (H-Cal P = 0.001, MyHC P = 0.05, osteopontin P = 0.02) at 12-14 weeks, but not 8-10 weeks, gestational age induced reduced expression of contractile VSMC markers and increased osteopontin expression. Addition of exogenous (10 ng/ml) Ang-1 (P = 0.006) or Ang-2 (P = 0.009) also reduced H-Cal expression in the CPA model. Inhibition of Ang-1 (P = 0.0004) or Ang-2 (P = 0.004) in uNK cell supernatants blocked the ability of uNK cell supernatants to reduce H-Cal expression. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study and the role of uNK cells, Ang-1 and Ang-2 in SpA remodelling in vivo has not yet been shown. WIDER IMPLICATIONS OF THE FINDINGS VSMC dedifferentiation is a feature of early SpA remodelling and uNK cells and EVT play key roles in this process by secretion of Ang-1 and Ang-2. This is one of the first studies to suggest a direct role for Ang-1 and Ang-2 in VSMC biology. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a grant from British Biotechnology and Biosciences Research Council (BB/E016790/1). The authors have no competing interests to declare.

38 citations


Journal ArticleDOI
TL;DR: It is suggested that matrix stiffness regulates SMC phenotype and matrix remodeling through TGF-β signal pathway, which unravels a mechanobiological mechanism in vascular remodeling, and will help develop strategies for vascular tissue engineering, disease modeling and therapies.

30 citations


Journal ArticleDOI
TL;DR: The implantation of Gynemesh PS had a negative impact on the structural and functional integrity of vaginal smooth muscle evidenced by atrophic macro- and microscopic muscle morphology, decreased innervation and impaired contractile property, consistent with a maladaptive remodeling response.

14 citations


Journal ArticleDOI
TL;DR: It is found that, although SMTN does not interact with full-length FLNA, it binds to FLNA variant 1 (FLNAvar-1) that exposes the cryptic CD cleft of R21, and inhibition of Rho-kinase using Y27632 also increases the diffusion, which demonstrated that SMTN specifically interacts with FLNA var-1 and mechanically activated FLNA in cells.
Abstract: Filamin A (FLNA) is a ubiquitously expressed actin cross-linking protein and a scaffold of numerous binding partners to regulate cell proliferation, migration, and survival. FLNA is a homodimer, and each subunit has an N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats (R). FLNA mediates mechanotransduction by force-induced conformational changes of its cryptic integrin-binding site on R21. Here, we identified two novel FLNA-binding partners, smoothelins (SMTN A and B) and leucine zipper protein 1 (LUZP1), using stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics followed by an in silico screening for proteins having a consensus FLNA-binding domain. We found that, although SMTN does not interact with full-length FLNA, it binds to FLNA variant 1 (FLNAvar-1) that exposes the cryptic CD cleft of R21. Point mutations on the C strand that disrupt the integrin binding also block the SMTN interaction. We identified FLNA-binding domains on SMTN using mutagenesis...

13 citations


Journal ArticleDOI
TL;DR: The combination of on-site differentiation of stem cells towards vascular cells in the natural vessel ECM scaffold and maturation of the resulting vessel construct in a dynamic cell culture environment provides a promising approach to fabricating a clinically applicable vessel graft with similar mechanical properties and physiological functions to those of native blood vessels.
Abstract: Although a significant number of studies on vascular tissue engineering have been reported, the current availability of vessel substitutes in the clinic remains limited mainly due to the mismatch of their mechanical properties and biological functions with native vessels. In this study, a novel approach to fabricating a vessel graft for vascular tissue engineering was developed by promoting differentiation of human bone marrow mesenchymal stem cells (MSCs) into endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) on a native vascular extracellular matrix (ECM) scaffold in a rotary bioreactor. The expression levels of CD31 and vWF, and the LDL uptake capacity as well as the angiogenesis capability of the EC-like cells in the dynamic culture system were significantly enhanced compared to the static system. In addition, α-actin and smoothelin expression, and contractility of VSMC-like cells harvested from the dynamic model were much higher than those in a static culture system. The combination of on-site differentiation of stem cells towards vascular cells in the natural vessel ECM scaffold and maturation of the resulting vessel construct in a dynamic cell culture environment provides a promising approach to fabricating a clinically applicable vessel graft with similar mechanical properties and physiological functions to those of native blood vessels.

13 citations


Journal ArticleDOI
TL;DR: The testes of sexually mature males of six mammalian species have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations, to derive novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.
Abstract: The testes of sexually mature males of six mammalian species (men, bulls, boars, rats, mice, guinea pigs) have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations. In these tissues, the peritubular walls represent lamellar encasement structures wrapped around the seminiferous tubules as a bandage system of extracellular matrix layers, alternating with monolayers of very flat polyhedral “lamellar smooth muscle cells” (LSMCs), the number of which varies in different species from 1 to 5 or 6. These LSMCs are complete SMCs containing smooth muscle α-actin (SMA), myosin light and heavy chains, α-actinin, tropomyosin, smoothelin, intermediate-sized filament proteins desmin and/or vimentin, filamin, talin, dystrophin, caldesmon, calponin, and protein SM22α, often also cytokeratins 8 and 18. In the monolayers, the LSMCs are connected by adherens junctions (AJs) based on cadherin-11, in some species also with P-cadherin and/or E-cadherin, which are anchored in cytoplasmic plaques containing β-catenin and other armadillo proteins, in some species also striatin family proteins, protein myozap and/or LUMA. The LSMC cytoplasm is rich in myofilament bundles, which in many regions are packed in paracrystalline arrays, as well as in “dense bodies,” “focal adhesions,” and caveolae. In addition to some AJ-like end-on-end contacts, the LSMCs are laterally connected by numerous vertical AJ-like junctions located in variously sized and variously shaped, overlapping (alter super alterum) lamelliform cell protrusions. Consequently, the LSMCs of the peritubular wall monolayers are SMCs sensu stricto which are laterally connected by a novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.

7 citations