scispace - formally typeset
Search or ask a question
Topic

Smoothelin

About: Smoothelin is a research topic. Over the lifetime, 264 publications have been published within this topic receiving 14069 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Microvessels were thin-walled in normal and atherosclerotic arteries, and the compromised structural integrity of microVascular endothelium may explain the microvascular leakage responsible for intraplaque hemorrhage in advanced human coronary atherosclerosis.

312 citations

Journal ArticleDOI
TL;DR: Specific accumulation of versican, hyaluronan, and CD44 at the sites of plaque erosion implicates an involvement of these molecules in events associated with acute coronary thrombosis.
Abstract: Objective— The importance of the extracellular matrix molecules versican, biglycan, decorin, and hyaluronan in plaque instability has not been recognized. Methods and Results— Coronary lesions with acute thrombi and stable plaques were examined for the accumulation and distribution of specific proteoglycans and hyaluronan at culprit sites. The cell surface receptor for hyaluronan, CD44, and smooth muscle (SM) cell maturation markers were also assessed. Proteoglycans and hyaluronan accumulated in distinct patterns depending on plaque type. The fibrous cap of stable lesions was enriched in versican and biglycan, with considerably less staining for decorin and hyaluronan, whereas picrosirius red revealed a heavy accumulation of collagen type I. In contrast, intense staining for hyaluronan and versican was found in erosions at the plaque/thrombus interface, with weak staining for biglycan and decorin; collagen content was predominantly type III. Rupture sites showed little immunoreactivity for proteoglycans or hyaluronan. CD44 was localized along the plaque/thrombus interface in erosions, whereas in ruptures and stable plaques, it was mostly confined to inflammatory cells. Positive immunostaining for immature SM cells (SM myosin heavy chain SM1 and SMemb) was present in stable and eroded plaques, whereas the presence of SM2 and smoothelin was weak or nonexistent. Conclusions— Specific accumulation of versican, hyaluronan, and CD44 at the sites of plaque erosion implicates an involvement of these molecules in events associated with acute coronary thrombosis.

265 citations

Journal ArticleDOI
TL;DR: The early induction of two members of the inhibitor of differentiation (ID) family of transcriptional regulators, ID1 and ID3, was followed by the up-regulation of a number of genes that are usually expressed by highly differentiated smooth muscle cells, including smooth muscle myosin heavy chain, basic calponin, and smoothelin.
Abstract: Transforming growth factor-beta1 (TGF-beta1) plays a central role in promoting extracellular matrix protein deposition by promoting the transformation of fibroblasts to myofibroblasts. To gain new insights into the transcriptional programs involved, we profiled human fetal lung fibroblast global gene expression in response to TGF-beta1 up to 24 hours using oligonucleotide microarrays. In this report, we present data for 146 genes that were up-regulated at least twofold at two time points. These genes group into several major functional categories, including genes involved in cytoskeletal reorganization (n = 30), matrix formation (n = 25), metabolism and protein biosynthesis (n = 27), cell signaling (n = 21), proliferation and survival (n = 13), gene transcription (n = 9), and of uncertain function (n = 21). For 80 of these genes, this is the first report that they are TGF-beta1-responsive. The early induction of two members of the inhibitor of differentiation (ID) family of transcriptional regulators, ID1 and ID3, was followed by the up-regulation of a number of genes that are usually expressed by highly differentiated smooth muscle cells, including smooth muscle myosin heavy chain, basic calponin, and smoothelin. These findings were confirmed at the protein level for primary adult lung fibroblasts. ID1 further behaved like a typical immediate-early gene and, unlike ID3, was expressed and induced at the protein level. Immunohistochemical analysis showed that ID1 was highly expressed by (myo)fibroblasts within fibrotic foci in experimentally induced pulmonary fibrosis. ID1 acts as a dominant-negative antagonist of basic helix-loop-helix transcription factors that drive cell lineage commitment and differentiation. These findings have important implications for our understanding of fibroblast transcriptional programming in response to TGF-beta1 during development, oncogenesis, tissue repair, and fibrosis.

262 citations

Journal ArticleDOI
TL;DR: It is concluded that smoothelin is a new cytoskeletal protein that is only found in contractile smooth muscle cells and does not belong to one of the classes of structural proteins presently known.
Abstract: The characterization of a novel 59-kD cytoskeletal protein is described. It is exclusively observed in smooth muscle cells by Northern blotting and immunohistochemical analysis and therefore designated "smoothelin." A human smooth muscle cDNA library was screened with the monoclonal antibody R4A, and a full-size cDNA of the protein was selected. The cDNA was sequenced and appeared to contain a 1,113-bp open reading frame. Based on the cDNA sequence, the calculated molecular weight of the polypeptide was 40 kD and it was demonstrated to contain two N-glycosylation sites. Computer assisted analysis at the protein level revealed a 56-amino acid domain with homologies of approximately 40% with a sequence bordering the actin-binding domains of dystrophin, utrophin, beta-spectrin and alpha-actinin. In situ hybridization demonstrated that human smoothelin is encoded by a single copy gene which is located on chromosome 22. Immunohistochemistry and Western blotting revealed synthesis of smoothelin in smooth muscle of species evolutionarily as far apart as human and teleost. Northern blotting indicated that sequence as well as size of the mRNA (approximately 1,500 bases) are conserved among vertebrates. Cell fractionation studies and differential centrifugation showed that the protein cannot be extracted with Triton X-100, which indicates that it is a part of the cytoskeleton. Transfection of the human cDNA into smooth muscle cells and COS7 cells produced a protein of 59 kD, which assembled into a filamentous network. However, in rat heart-derived myoblasts association with stress fibers was most prominent. Smoothelin was not detected in primary or long term smooth muscle cell cultures. Also, transcription of smoothelin mRNA was almost instantly halted in smooth muscle tissue explants. We conclude that smoothelin is a new cytoskeletal protein that is only found in contractile smooth muscle cells and does not belong to one of the classes of structural proteins presently known.

254 citations

Journal ArticleDOI
TL;DR: The distribution of smoothelin in the SMCs of the vascular system appears to be limited to blood vessels that are capable of pulsatile contraction.
Abstract: Smoothelin is a constituent of the cytoskeleton specific for smooth muscle cells (SMCs) in a broad range of species. It has been postulated that smoothelin represents a marker of highly differentiated, contractile SMCs. Here, we present data on the presence of smoothelin in the human vascular system that support this hypothesis. For this purpose, smoothelin distribution was studied (1) during vasculogenesis of the placenta, (2) in normal adult blood vessels, and (3) in atherosclerotic lesions. Smoothelin was first observed in placental tissue at approximately week 10 to 11 of gestation. In full-term placenta, it was found in the SMCs of vessels in the large stem villi and in the chorionic plate. Furthermore, it was present in the fetal arteries of smaller stem villi, but it was not found in the veins. In adult blood vessels, a small population of aortic (≈10%) and large muscular artery (≈30% to 50%) SMCs was positive for smoothelin. In general, smoothelin and desmin were coexpressed in the same S...

175 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
71% related
Inflammation
76.4K papers, 4M citations
71% related
Apoptosis
115.4K papers, 4.8M citations
70% related
Signal transduction
122.6K papers, 8.2M citations
70% related
Cellular differentiation
90.9K papers, 6M citations
69% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202113
202012
20196
20188
201713
20165