scispace - formally typeset
Search or ask a question
Topic

Smoothelin

About: Smoothelin is a research topic. Over the lifetime, 264 publications have been published within this topic receiving 14069 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A correlation between the lack of contractile marker protein expression in epithelioid cells and the presence of only a few filaments is observed, although the epithelIOid cells are α-smooth muscle actin positive.
Abstract: Data on the cytoskeleton of epithelioid cells in arteriovenous anastomosis (AVA) are sparse, but there is evidence that the (myo)-epithelioid cells of the AVAs represent a specialized smooth muscle cell type with less contractile properties. We demonstrated the expression of α-smooth muscle actin, smooth muscle myosin, calponin, caldesmon, and caveolin in epithelioid cells of rabbit ear and in human toes, finger tips, and glomus tumors by means of indirect immunofluorescence techniques and immunoelectron microscopy. Epithelioid cells in rabbit ear did not express vimentin, but it was present in human toes, finger tips, and glomus tumors. Epithelioid cells in human toes, finger tips, and glomus tumors did not express desmin, but it was present in rabbit ear. Epithelioid cells did not express cytokeratins. The epithelioid cells examined showed only a weak expression of the protein smoothelin, which occurs exclusively in contractile smooth muscle cells. Immunoelectron microscopical demonstration of α-smooth muscle actin revealed a striking difference in the arrangement of actin filaments in the epithelioid cells as compared to that in the smooth muscle cells of blood vessels. The epithelioid cells contained a loose array of actin filaments, whereas the smooth muscle cells contained tightly packed parallel actin bundles. In the present study we observed a correlation between the lack of contractile marker protein expression in epithelioid cells and the presence of only a few filaments, although the epithelioid cells are α-smooth muscle actin positive. The reduced number of contractile elements in the epithelioid cells of rabbit and human anastomoses suggests a lower contractility of epithelioid cells compared to that of the surrounding smooth muscle cells in anastomoses. A second interesting difference between both cell types is the high number of caveolae in epithelioid cells. Immunoelectron microscopy showed a compact distribution of caveolae at the epithelioid cell border, but a more dispersed distribution of caveolae in the cytoplasm of the blood vessel endothelium. The benign glomus tumor was characterized by an expression pattern of cytoskeletal proteins similar to that of epithelioid cells, confirming its description as a benign tumor.

7 citations

Journal ArticleDOI
TL;DR: Three-dimensional bioprinting and tissue engineering method is combined to form a tissue-engineered urinary tract patch, which could be employed for the application on Beagles urinary tract defect mode to verify its effectiveness on urinary tract reconstruction.
Abstract: Background: Traditional tissue engineering methods to fabricate urinary tract patch have some drawbacks such as compromised cell viability and uneven cell distribution within scaffold. In this study, we combined three-dimensional (3D) bioprinting and tissue engineering method to form a tissue-engineered urinary tract patch, which could be employed for the application on Beagles urinary tract defect mode to verify its effectiveness on urinary tract reconstruction. Methods: Human adipose-derived stem cells (hADSCs) were dropped into smooth muscle differentiation medium to generate induced microtissues (ID-MTs), flow cytometry was utilized to detect the positive percentage for CD44, CD105, CD45, and CD34 of hADSCs. Expression of vascular endothelial growth factor A (VEGFA) and tumor necrosis factor-stimulated gene-6 (TSG-6) in hADSCs and MTs were identified by Western blotting. Then the ID-MTs were employed for 3D bioprinting. The bioprinted structure was encapsulated by transplantation into the subcutaneous tissue of nude mice for 1 week. After retrieval of the encapsulated structure, hematoxylin and eosin and Masson’s trichrome staining were performed to demonstrate the morphology and reveal collagen and smooth muscle fibers, integral optical density (IOD) and area of interest were calculated for further semiquantitative analysis. Immunofluorescent double staining of CD31 and α-smooth muscle actin (α-SMA) were used to reveal vascularization of the encapsulated structure. Immunohistochemistry was performed to evaluate the expression of interleukin-2 (IL-2), α-SMA, and smoothelin of the MTs in the implanted structure. Afterward, the encapsulated structure was seeded with human urothelial cells. Immunofluorescent staining of cytokeratins AE1/AE3 was applied to inspect the morphology of seeded encapsulated structure. Results: The semi-quantitative assay showed that the relative protein expression of VEGFA was 0.355 ± 0.038 in the hADSCs vs. 0.649 ± 0.150 in the MTs (t = 3.291, P = 0.030), while TSG-6 expression was 0.492 ± 0.092 in the hADSCs vs. 1.256 ± 0.401 in the MTs (t = 3.216, P = 0.032). The semi-quantitative analysis showed that the mean IOD of IL-2 in the MT group was 7.67 ± 1.26, while 12.6 ± 4.79 in the hADSCs group, but semi-quantitative analysis showed that there was no statistical significance in the difference between the two groups (t = 1.724, P = 0.16). The semi-quantitative analysis showed that IOD was 71.7 ± 14.2 in non-induced MTs (NI-MTs) vs. 35.7 ± 11.4 in ID-MTs for collagen fibers (t = 3.428, P = 0.027) and 12.8 ± 1.9 in NI-MTs vs. 30.6 ± 8.9 in ID-MTs for smooth muscle fibers (t= 3.369, P = 0.028); furthermore, the mean IOD was 0.0613 ± 0.0172 in ID-MTs vs. 0.0017 ± 0.0009 in NI-MTs for α-SMA (t = 5.994, P = 0.027), while 0.0355 ± 0.0128 in ID-MTs vs. 0.0035 ± 0.0022 in NI-MTs for smoothelin (t= 4.268, P = 0.013), which indicate that 3D bioprinted structure containing ID-MTs could mimic the smooth muscle layer of native urinary tract. After encapsulation of the urinary tract patch for additional cell adhesion, urothelial cells were seeded onto the encapsulated structures, and a monolayer urothelial cell was observed. Conclusion: Through 3D bioprinting and tissue engineering methods, we provided a promising way to fabricate tissue-engineered urinary tract patch for further investigation. Key words: Human adipose-derived stem cells; Urinary tract patch; Microtissues; Tissue engineering; Three-dimensional bioprinting

7 citations

Journal ArticleDOI
TL;DR: Investigating whether pre-differentiated smooth muscle-like ADSC (pADSC) can support SMC to generate stable smooth muscle tissue trough remodeling of ECM and factor secretion found an improved cell proliferation, contractility and organoid formation while retaining a stable phenotype that is comparable to the SMC monoculture.
Abstract: Introduction: All organs of human body are a conglomerate of various cell types with multidirectional interplay between the different cells and the surrounding microenvironment, leading to a stable tissue formation, homeostasis, and function. To develop a functional smooth muscle tissue, we need to simulate and create a multicellular microenvironment. The multilineage adipose-derived stem cells (ADSCs), which can be easily harvested in large numbers, may provide an alternative cell source for the replacement of smooth muscle cells (SMCs) in cell-based detrusor bioengineering therapeutic approaches. The aim of this study was to investigate whether predifferentiated smooth muscle-like ADSC (pADSC) can support SMCs to generate stable smooth muscle tissue through remodeling of extracellular matrix (ECM) and factor secretion. Methods: Rat SMC and pADSC were mono- and cocultured in the cell ratios 1:1, 1:2, 1:3, and 1:5 (SMC-pADSC) and grown for up to 2 weeks in vitro. The expression of the SMC-specific markers alpha-smooth muscle actin, calponin, myosin heavy chain 11 (MyH11), and smoothelin was assessed, and cell proliferation and contractility were analyzed. Proteomic analysis of the secretome (cell-cell contact was compared with a noncontact transwell 1:1 coculture) and the cell pellets was performed, with the focus on ECM deposition and remodeling, integrin expression and growth factor secretion. Results: SMC and pADSC were strongly positive for all smooth muscle markers. After 1 and 2 weeks of culture, the 1:1 cell ratio developed a significantly higher number of smooth muscle organoids and improved contractility. These organoids were highly structured, consisting of an SMC core surrounded by a pADSC layer. The deposition of various EMC proteins, such as collagens 1a1, 1a2, 2a1, 3a1, 5a2, 6a2, 12a1, and fibrillin 1, was significantly increased. A decreased matrix metalloproteinase 3 (MMP3), MMP9 and MMP13 secretion, as well as increased tissue inhibitors of metalloproteinase 1 (TIMP1) and TIMP2 secretion were found in the contact coculture compared with the monoculture controls. Conclusion: SMC-pADSC 1:1 cocultures exhibit an improved cell proliferation, contractility, and organoid formation compared with all other ratios and monoculture, while retaining a stable phenotype that is comparable with the SMC monoculture. These effects are mediated by increased ECM deposition and tight ECM remodeling by the secreted MMP and TIMP. Impact statement Harvesting smooth muscle cells (SMCs) from diseased bladders represents a significant limitation for clinical translation of bladder Tissue Engineering. Our results suggest that autologous predifferentiated smooth muscle-like adipose-derived stem cell can substitute SMCs, and may be used in combination with SMCs to generate contractile detrusor muscle tissue for patients suffering from end-stage bladder diseases. We demonstrate a beneficial effect when using these cells in a 1:1 ratio with improved deposition of extracellular matrix (ECM) molecules and superior remodeling of the ECM by matrix metalloproteinases and decreased tissue inhibitors of metalloproteinase activity.

7 citations

Journal ArticleDOI
TL;DR: The G-C-A-C haplotype appears to be a useful protective marker of essential hypertension in Japanese, and the SMTN gene might also be a genetic marker for essential hypertension.
Abstract: Smoothelin is a specific cytoskeletal protein that is associated with smooth muscle cells. The human SMTN gene encodes smoothelin-A and smoothelin-B, and studies using SMTN gene knockout mice have demonstrated that these animals develop hypertension. The aim of the present study was to investigate the association between the human SMTN gene and essential hypertension (EH) using a haplotype-based case-control study. This is the first study to assess the association between essential hypertension and this gene. A total of 255 EH patients and 225 controls were genotyped for the five single-nucleotide polymorphisms (rs2074738, rs5997872, rs56095120, rs9621187 and rs10304) used as genetic markers for the human SMTN gene. Data were analyzed for three separate groups: total subjects, men and women. Although there were no differences for genotype distributions, or the dominant and recessive model distributions noted for total subjects, men and women for all of the SNPs selected for the present study, for the total subjects group, the frequency of the G-C-A-C haplotype constructed with rs2074738-rs5997872-rs56095120-rs9621187 was significantly lower in the essential hypertension patients than in the controls (P = 0.002). The G-C-A-C haplotype appears to be a useful protective marker of essential hypertension in Japanese, and the SMTN gene might also be a genetic marker for essential hypertension.

7 citations

Journal ArticleDOI
TL;DR: Compared with contractile VSMCs, both VICs and cVSMCs display decreased expression of VSMC-specific markers such as smoothelin, myosin light chain kinase and SM22α; however, the expression of two major cytoskeletal and contractile proteins was downregulated in cVS MCs but not in Vics compared with contractiles, suggesting different mechanisms for the phenotypic modulation.
Abstract: Various in vitro models are used for studying phenotypic modulation of vascular smooth muscle cells (VSMCs) and the established culture of vascular smooth muscle cells (cVSMCs) is most often used for this purpose. On the other hand, vascular interstitial cells (VICs) are native phenotypically modulated VSMCs present in blood vessels under normal physiological conditions. The aim of this work has been to compare the difference in expression of a number of VSMC-specific markers, which are commonly used for the characterisation of phenotypic modulation of VSMCs, between freshly dispersed VSMCs, VICs and cVSMCs from rat abdominal aorta. Our experiments show that VICs are present in the rat aorta and express markers of VSMCs. Both VICs and cVSMCs display the presence of sparse individual stress fibres enriched in alpha smooth muscle actin (αSM-actin), whereas in VSMCs, this protein is more densely packed. Compared with contractile VSMCs, both VICs and cVSMCs display decreased expression of VSMC-specific markers such as smoothelin, myosin light chain kinase and SM22α; however, the expression of two major cytoskeletal and contractile proteins (smooth muscle myosin heavy chain and αSM-actin) was downregulated in cVSMCs but not in VICs compared with contractile VSMCs. These results suggest different mechanisms for the phenotypic modulation of cVSMCs and VICs. VICs might therefore represent a novel convenient model for studying molecular mechanisms that govern the phenotypic modulation of VSMCs.

6 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
71% related
Inflammation
76.4K papers, 4M citations
71% related
Apoptosis
115.4K papers, 4.8M citations
70% related
Signal transduction
122.6K papers, 8.2M citations
70% related
Cellular differentiation
90.9K papers, 6M citations
69% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202113
202012
20196
20188
201713
20165