scispace - formally typeset
Search or ask a question
Topic

SnRNP Biogenesis

About: SnRNP Biogenesis is a research topic. Over the lifetime, 163 publications have been published within this topic receiving 23746 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A marked deficiency of the SMN protein in SMA is shown and the molecular mechanism underlying the pathogenesis of the disease is elucidated by western blot and immunohistochemical analyses using antibodies raised against theSMN protein.
Abstract: Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder characterized by degeneration of motor neurons of the spinal cord. Three different forms of childhood SMA have been recognized on the basis of age at onset and clinical course: Werdnig-Hoffmann disease (type-1), the intermediate form (type-II) and Kugelberg-Welander disease (type-III). A gene termed 'survival of motor neuron' (SMN) has been recognized as the disease-causing gene in SMA. SMN encodes a protein located within a novel nuclear structure and interacts with RNA-binding proteins. To elucidate the molecular mechanism underlying the pathogenesis of the disease, we examined the expression of the SMN gene in both controls and SMA patients by western blot and immunohistochemical analyses using antibodies raised against the SMN protein. The present study shows a marked deficiency of the SMN protein in SMA.

998 citations

Journal ArticleDOI
TL;DR: It is found that SMN interacts with the RGG box region of hnRNP U, with itself, with fibrillarin and with several novel proteins, and monoclonal antibodies to the SMN protein are produced, report here on its striking cellular localization pattern.
Abstract: Spinal muscular atrophy (SMA) is a common, often fatal, autosomal recessive disease leading to progressive muscle wasting and paralysis as a result of degeneration of anterior horn cells of the spinal cord. A gene termed survival of motor neurons (SMN), at 5q13, has been identified as the determining gene of SMA (Lefebvre et al., 1995). The SMN gene is deleted in > 98% of SMA patients, but the function of the SMN protein is unknown. In searching for hnRNP-interacting proteins we found that SMN interacts with the RGG box region of hnRNP U, with itself, with fibrillarin and with several novel proteins. We have produced monoclonal antibodies to the SMN protein, and we report here on its striking cellular localization pattern. Immunolocalization studies using SMN monoclonal antibodies show several intense dots in HeLa cell nuclei. These structures are similar in number (2-6) and size (0.1-1.0 micron) to coiled bodies, and frequently are found near or associated with coiled bodies. We term these prominent nuclear structures gems, for Gemini of coiled bodies.

776 citations

Journal ArticleDOI
TL;DR: Investigation of fibroblasts from SMA patients with various clinical severities of SMA showed a moderate reduction in the amount of SMN protein, particularly in type I (most severe) patients, which is consistent with features of this motor neuron disease.
Abstract: The 38 kDa survival motor neuron (SMN) protein is encoded by two ubiquitously expressed genes: telomeric SMN (SMN(T)) and centromeric SMN (SMN(C)). Mutations in SMN(T), but not SMN(C), cause proximal spinal muscular atrophy (SMA), an autosomal recessive disorder that results in loss of motor neurons. SMN is found in the cytoplasm and nucleus. The nuclear form is located in structures termed gems. Using a panel of anti-SMN antibodies, we demonstrate that the SMN protein is expressed from both the SMN(T) and SMN(C) genes. Western blot analysis of fibroblasts from SMA patients with various clinical severities of SMA showed a moderate reduction in the amount of SMN protein, particularly in type I (most severe) patients. Immunocytochemical analysis of SMA patient fibroblasts indicates a significant reduction in the number of gems in type I SMA patients and a correlation of the number of gems with clinical severity. This correlation to phenotype using primary fibroblasts may serve as a useful diagnostic tool in an easily accessible tissue. SMN is expressed at high levels in brain, kidney and liver, moderate levels in skeletal and cardiac muscle, and low levels in fibroblasts and lymphocytes. In SMA patients, the SMN level was moderately reduced in muscle and lymphoblasts. In contrast, SMN was expressed at high levels in spinal cord from normals and non-SMA disease controls, but was reduced 100-fold in spinal cord from type I patients. The marked reduction of SMN in type I SMA spinal cords is consistent with the features of this motor neuron disease. We suggest that disruption of SMN(T) in type I patients results in loss of SMN from motor neurons, resulting in the degeneration of these neurons.

684 citations

Journal ArticleDOI
TL;DR: U2 and U4/U6*U5 tri-snRNPs functionally associate with the pre-mRNA at an earlier stage of spliceosome assembly than previously thought, and additional evidence supporting UsnRNA-mediated catalysis of pre- mRNA splicing has been presented.

680 citations

Journal ArticleDOI
TL;DR: It is proposed that SMN is crucial for the transport of mRNA in neurons and that disruption of this function results in SMA.
Abstract: Many neurogenetic disorders are caused by the mutation of ubiquitously expressed genes. One such disorder, spinal muscular atrophy, is caused by loss or mutation of the survival motor neuron1 gene (SMN1), leading to reduced SMN protein levels and a selective dysfunction of motor neurons. SMN, together with partner proteins, functions in the assembly of small nuclear ribonucleoproteins (snRNPs), which are important for pre-mRNA splicing. It has also been suggested that SMN might function in the assembly of other ribonucleoprotein complexes. Two hypotheses have been proposed to explain the molecular dysfunction that gives rise to spinal muscular atrophy (SMA) and its specificity to a particular group of neurons. The first hypothesis states that the loss of SMN's well-known function in snRNP assembly causes an alteration in the splicing of a specific gene (or genes). The second hypothesis proposes that SMN is crucial for the transport of mRNA in neurons and that disruption of this function results in SMA.

660 citations


Network Information
Related Topics (5)
Transcription (biology)
56.5K papers, 2.9M citations
79% related
Chromatin
50.7K papers, 2.7M citations
78% related
Transcription factor
82.8K papers, 5.4M citations
77% related
Regulation of gene expression
85.4K papers, 5.8M citations
77% related
RNA
111.6K papers, 5.4M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20217
20203
20191
20186
20174
20165