scispace - formally typeset
Search or ask a question
Topic

Social media

About: Social media is a research topic. Over the lifetime, 76058 publications have been published within this topic receiving 1189027 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A classification of Social Media is provided which groups applications currently subsumed under the generalized term into more specific categories by characteristic: collaborative projects, blogs, content communities, social networking sites, virtual game worlds, and virtual social worlds.

13,932 citations

Book
01 May 2012
TL;DR: Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language as discussed by the authors and is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining.
Abstract: Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language. It is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining. In fact, this research has spread outside of computer science to the management sciences and social sciences due to its importance to business and society as a whole. The growing importance of sentiment analysis coincides with the growth of social media such as reviews, forum discussions, blogs, micro-blogs, Twitter, and social networks. For the first time in human history, we now have a huge volume of opinionated data recorded in digital form for analysis. Sentiment analysis systems are being applied in almost every business and social domain because opinions are central to almost all human activities and are key influencers of our behaviors. Our beliefs and perceptions of reality, and the choices we make, are largely conditioned on how others see and evaluate the world. For this reason, when we need to make a decision we often seek out the opinions of others. This is true not only for individuals but also for organizations. This book is a comprehensive introductory and survey text. It covers all important topics and the latest developments in the field with over 400 references. It is suitable for students, researchers and practitioners who are interested in social media analysis in general and sentiment analysis in particular. Lecturers can readily use it in class for courses on natural language processing, social media analysis, text mining, and data mining. Lecture slides are also available online.

4,515 citations

Journal ArticleDOI
TL;DR: The authors found that people are much more likely to believe stories that favor their preferred candidate, especially if they have ideologically segregated social media networks, and that the average American adult saw on the order of one or perhaps several fake news stories in the months around the 2016 U.S. presidential election, with just over half of those who recalled seeing them believing them.
Abstract: Following the 2016 U.S. presidential election, many have expressed concern about the effects of false stories (“fake news”), circulated largely through social media. We discuss the economics of fake news and present new data on its consumption prior to the election. Drawing on web browsing data, archives of fact-checking websites, and results from a new online survey, we find: (i) social media was an important but not dominant source of election news, with 14 percent of Americans calling social media their “most important” source; (ii) of the known false news stories that appeared in the three months before the election, those favoring Trump were shared a total of 30 million times on Facebook, while those favoring Clinton were shared 8 million times; (iii) the average American adult saw on the order of one or perhaps several fake news stories in the months around the election, with just over half of those who recalled seeing them believing them; and (iv) people are much more likely to believe stories that favor their preferred candidate, especially if they have ideologically segregated social media networks.

3,959 citations

Journal ArticleDOI
danah boyd1, Kate Crawford1
TL;DR: The era of Big Data has begun as discussed by the authors, where diverse groups argue about the potential benefits and costs of analyzing genetic sequences, social media interactions, health records, phone logs, government records, and other digital traces left by people.
Abstract: The era of Big Data has begun. Computer scientists, physicists, economists, mathematicians, political scientists, bio-informaticists, sociologists, and other scholars are clamoring for access to the massive quantities of information produced by and about people, things, and their interactions. Diverse groups argue about the potential benefits and costs of analyzing genetic sequences, social media interactions, health records, phone logs, government records, and other digital traces left by people. Significant questions emerge. Will large-scale search data help us create better tools, services, and public goods? Or will it usher in a new wave of privacy incursions and invasive marketing? Will data analytics help us understand online communities and political movements? Or will it be used to track protesters and suppress speech? Will it transform how we study human communication and culture, or narrow the palette of research options and alter what ‘research’ means? Given the rise of Big Data as a socio-tech...

3,955 citations

Posted Content
TL;DR: In this article, the authors present a framework that defines social media by using seven functional building blocks: identity, conversations, sharing, presence, relationships, reputation, and groups, and explain the implications that each block can have for how firms should engage with social media.
Abstract: Traditionally, consumers used the Internet to simply expend content: they read it, they watched it, and they used it to buy products and services. Increasingly, however, consumers are utilizing platforms – such as content sharing sites, blogs, social networking, and wikis – to create, modify, share, and discuss Internet content. This represents the social media phenomenon, which can now significantly impact a firm’s reputation, sales, and even survival. Yet, many executives eschew or ignore this form of media because they don’t understand what it is, the various forms it can take, and how to engage with it and learn. In response, we present a framework that defines social media by using seven functional building blocks: identity, conversations, sharing, presence, relationships, reputation, and groups. As different social media activities are defined by the extent to which they focus on some or all of these blocks, we explain the implications that each block can have for how firms should engage with social media. To conclude, we present a number of recommendations regarding how firms should develop strategies for monitoring, understanding, and responding to different social media activities.

3,551 citations


Network Information
Related Topics (5)
Social network
42.9K papers, 1.5M citations
90% related
The Internet
213.2K papers, 3.8M citations
90% related
Conceptual framework
30.2K papers, 1M citations
83% related
Empirical research
51.3K papers, 1.9M citations
83% related
Information system
107.5K papers, 1.8M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20249
202311,062
202222,700
20218,246
20209,076
20198,197