Topic

# Soft computing

About: Soft computing is a(n) research topic. Over the lifetime, 6710 publication(s) have been published within this topic receiving 118508 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1996TL;DR: This text provides a comprehensive treatment of the methodologies underlying neuro-fuzzy and soft computing with equal emphasis on theoretical aspects of covered methodologies, empirical observations, and verifications of various applications in practice.

Abstract: Included in Prentice Hall's MATLAB Curriculum Series, this text provides a comprehensive treatment of the methodologies underlying neuro-fuzzy and soft computing. The book places equal emphasis on theoretical aspects of covered methodologies, empirical observations, and verifications of various applications in practice.

4,081 citations

••

TL;DR: Interestingly, neuro fuzzy and soft computing a computational approach to learning and machine intelligence that you really wait for now is coming.

Abstract: Interestingly, neuro fuzzy and soft computing a computational approach to learning and machine intelligence that you really wait for now is coming. It's significant to wait for the representative and beneficial books to read. Every book that is provided in better way and utterance will be expected by many peoples. Even you are a good reader or not, feeling to read this book will always appear when you find it. But, when you feel hard to find it as yours, what to do? Borrow to your friends and don't know when to give back it to her or him.

3,732 citations

••

TL;DR: The main purpose of this paper is to introduce the basic notions of the theory of soft sets, to present the first results of the the theory, and to discuss some problems of the future.

Abstract: The soft set theory offers a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. The main purpose of this paper is to introduce the basic notions of the theory of soft sets, to present the first results of the theory, and to discuss some problems of the future.

3,098 citations

•

01 Jan 2011

TL;DR: The aim of this paper is to present three new aspects of KEEL: KEEL-dataset, a data set repository which includes the data set partitions in theKEELformat and some guidelines for including new algorithms in KEEL, helping the researcher to compare the results of many approaches already included within the KEEL software.

Abstract: (Knowledge Extraction based onEvolutionary Learning) tool, an open source software that supports datamanagement and a designer of experiments. KEEL pays special attentionto the implementation of evolutionary learning and soft computing basedtechniques for Data Mining problems including regression, classiﬁcation,clustering, pattern mining and so on.The aim of this paper is to present three new aspects of KEEL: KEEL-dataset, a data set repository which includes the data set partitions in theKEELformatandshowssomeresultsofalgorithmsinthesedatasets; someguidelines for including new algorithms in KEEL, helping the researcherstomaketheirmethodseasilyaccessibletootherauthorsandtocomparetheresults of many approaches already included within the KEEL software;and a module of statistical procedures developed in order to provide to theresearcher a suitable tool to contrast the results obtained in any experimen-talstudy.Acaseofstudyisgiventoillustrateacompletecaseofapplicationwithin this experimental analysis framework.

1,803 citations

•

01 Aug 1996

TL;DR: A simple case in point is the problem of parking a car as discussed by the authors, where the final position of the car is not specified exactly, and if it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position.

Abstract: The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial intelligence. In the years ahead, this may well become a widely held position.

1,475 citations