scispace - formally typeset
Search or ask a question
Topic

Soft computing

About: Soft computing is a research topic. Over the lifetime, 6710 publications have been published within this topic receiving 118508 citations.


Papers
More filters
Journal ArticleDOI
01 Feb 2012
TL;DR: This study aims at developing a methodology for effective stock selection using support vector regression as well as genetic algorithms, and expects this hybrid GA-SVR methodology to advance the research in soft computing for finance and provide an effective solution to stock selection in practice.
Abstract: In the areas of investment research and applications, feasible quantitative models include methodologies stemming from soft computing for prediction of financial time series, multi-objective optimization of investment return and risk reduction, as well as selection of investment instruments for portfolio management based on asset ranking using a variety of input variables and historical data, etc. Among all these, stock selection has long been identified as a challenging and important task. This line of research is highly contingent upon reliable stock ranking for successful portfolio construction. Recent advances in machine learning and data mining are leading to significant opportunities to solve these problems more effectively. In this study, we aim at developing a methodology for effective stock selection using support vector regression (SVR) as well as genetic algorithms (GAs). We first employ the SVR method to generate surrogates for actual stock returns that in turn serve to provide reliable rankings of stocks. Top-ranked stocks can thus be selected to form a portfolio. On top of this model, the GA is employed for the optimization of model parameters, and feature selection to acquire optimal subsets of input variables to the SVR model. We will show that the investment returns provided by our proposed methodology significantly outperform the benchmark. Based upon these promising results, we expect this hybrid GA-SVR methodology to advance the research in soft computing for finance and provide an effective solution to stock selection in practice.

191 citations

Journal ArticleDOI
TL;DR: A soft computing based load balancing approach has been proposed and a local optimization approach Stochastic Hill climbing is used for allocation of incoming jobs to the servers or virtual machines(VMs).

190 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: A new methodology through a framework for decision making tasks using the soft computing technique of FCMs based on knowledge extraction methods is presented, presented to illustrate the application of the proposed framework and its functioning.
Abstract: In this research work, a novel framework for the construction of augmented Fuzzy Cognitive Maps based on Fuzzy Rule-Extraction methods for decisions in medical informatics is investigated. Specifically, the issue of designing augmented Fuzzy Cognitive Maps combining knowledge from experts and knowledge from data in the form of fuzzy rules generated from rule-based knowledge discovery methods is explored. Fuzzy cognitive maps are knowledge-based techniques which combine elements of fuzzy logic and neural networks and work as artificial cognitive networks. The knowledge extraction methods used in this study extract the available knowledge from data in the form of fuzzy rules and insert them into the FCM, contributing to the development of a dynamic decision support system. The fuzzy rules, which derived by these extraction algorithms (such as fuzzy decision trees, association rule-based methods and neuro-fuzzy methods) are implemented to restructure the FCM model, producing new weights into the FCM model, that initially structured by experts. Concluding, our scope is to present a new methodology through a framework for decision making tasks using the soft computing technique of FCMs based on knowledge extraction methods. A well known medical decision making problem pertaining to the problem of radiotherapy treatment planning selection is presented to illustrate the application of the proposed framework and its functioning.

190 citations

Journal ArticleDOI
01 Jun 2008
TL;DR: Fuzzy cognitive maps are suitable for medical decision support systems and appropriate FCM architectures are proposed and developed as well as the corresponding examples from two medical disciplines, i.e. speech and language pathology and obstetrics, are described.
Abstract: Medical decision support systems can provide assistance in crucial clinical judgments, particularly for inexperienced medical professionals. Fuzzy cognitive maps (FCMs) is a soft computing technique for modeling complex systems, which follows an approach similar to human reasoning and the human decision-making process. FCMs can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behavior of any system. Medical decision systems are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall clinical decision with a different degree. Thus, FCMs are suitable for medical decision support systems and appropriate FCM architectures are proposed and developed as well as the corresponding examples from two medical disciplines, i.e. speech and language pathology and obstetrics, are described.

189 citations

Journal ArticleDOI
TL;DR: In this article, a survey on assembly sequence planning and assembly line balancing problems using various soft computing approaches is presented, including genetic algorithm, ant colony optimization, particle swarm optimization and particle swarm optimisation.
Abstract: Assembly optimisation activities occur across development and production stages of manufacturing goods. Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) problems are among the assembly optimisation. Both of these activities are classified as NP-hard. Several soft computing approaches using different techniques have been developed to solve ASP and ALB. Although these approaches do not guarantee the optimum solution, they have been successfully applied in many ASP and ALB optimisation works. This paper reported the survey on research in ASP and ALB that use soft computing approaches for the past 10 years. To be more specific, only Simple Assembly Line Balancing Problem (SALBP) is considered for ALB. The survey shows that three soft computing algorithms that frequently used to solve ASP and ALB are Genetic Algorithm, Ant Colony Optimisation and Particle Swarm Optimisation. Meanwhile, the research in ASP and ALB is also progressing to the next level by integration of assembly optimisation activities across product development stages.

185 citations


Network Information
Related Topics (5)
Fuzzy logic
151.2K papers, 2.3M citations
90% related
Artificial neural network
207K papers, 4.5M citations
86% related
Optimization problem
96.4K papers, 2.1M citations
84% related
Feature extraction
111.8K papers, 2.1M citations
82% related
Cluster analysis
146.5K papers, 2.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023159
2022270
2021319
2020332
2019313
2018348