scispace - formally typeset
Search or ask a question

Showing papers on "Soil organic matter published in 2017"


Journal ArticleDOI
15 Apr 2017-Geoderma
TL;DR: In this paper, the authors surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia).

1,171 citations


Journal ArticleDOI
TL;DR: This review discusses various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers and concludes that this technology is ready for commercial exploitation in various regions worldwide.
Abstract: The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems.In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.

847 citations


Journal ArticleDOI
TL;DR: A machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment land use data in combination with climatic, landform and lithology covariates, demonstrating that there are identifiable regions which can be targeted for SOC restoration efforts.
Abstract: Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes “grazing” and “cropland” contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts.

648 citations


Journal ArticleDOI
TL;DR: This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars, and summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation.

551 citations


Journal ArticleDOI
TL;DR: This analysis suggests root inputs are approximately five times more likely than an equivalent mass of aboveground litter to be stabilized as SOM, and that fungi and bacteria, and soil faunal food webs, and mineral associations drive stabilization at depths greater than ∼30 cm.
Abstract: Soil organic matter (SOM) anchors global terrestrial productivity and food and fiber supply. SOM retains water and soil nutrients and stores more global carbon than do plants and the atmosphere combined. SOM is also decomposed by microbes, returning CO2, a greenhouse gas, to the atmosphere. Unfortunately, soil carbon stocks have been widely lost or degraded through land use changes and unsustainable forest and agricultural practices. To understand its structure and function and to maintain and restore SOM, we need a better appreciation of soil organic carbon (SOC) saturation capacity and the retention of above- and belowground inputs in SOM. Our analysis suggests root inputs are approximately five times more likely than an equivalent mass of aboveground litter to be stabilized as SOM. Microbes, particularly fungi and bacteria, and soil faunal food webs strongly influence SOM decomposition at shallower depths, whereas mineral associations drive stabilization at depths greater than ∼30 cm. Global uncertaint...

537 citations


Journal ArticleDOI
06 Oct 2017-Science
TL;DR: In a 26-year soil warming experiment in a mid-latitude hardwood forest, changes in soil carbon cycling are documented to investigate the potential consequences for the climate system and support projections of a long-term, self-reinforcing carbon feedback from mid- latitude forests to theClimate system as the world warms.
Abstract: In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms.

483 citations


Journal ArticleDOI
TL;DR: It is proposed that relationships between soil food web structure and carbon cycling in soils need to be reconsidered and the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity during nature restoration.
Abstract: Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.

471 citations


Journal ArticleDOI
TL;DR: A new synthesis that has integrated data from hundreds of studies to document soil carbon responses to changes in management confirms that improving grassland management practices and conversion from cropland to grassland improve soil carbon stocks.
Abstract: Grassland ecosystems cover a large portion of Earths’ surface and contain substantial amounts of soil organic carbon. Previous work has established that these soil carbon stocks are sensitive to management and land use changes: grazing, species composition, and mineral nutrient availability can lead to losses or gains of soil carbon. Because of the large annual carbon fluxes into and out of grassland systems, there has been growing interest in how changes in management might shift the net balance of these flows, stemming losses from degrading grasslands or managing systems to increase soil carbon stocks (i.e., carbon sequestration). A synthesis published in 2001 assembled data from hundreds of studies to document soil carbon responses to changes in management. Here we present a new synthesis that has integrated data from the hundreds of studies published after our previous work. These new data largely confirm our earlier conclusions: improved grazing management, fertilization, sowing legumes and improved grass species, irrigation, and conversion from cultivation all tend to lead to increased soil C, at rates ranging from 0.105 to more than 1 Mg C·ha−1·yr−1. The new data include assessment of three new management practices: fire, silvopastoralism, and reclamation, although these studies are limited in number. The main area in which the new data are contrary to our previous synthesis is in conversion from native vegetation to grassland, where we find that across the studies the average rate of soil carbon stock change is low and not significant. The data in this synthesis confirm that improving grassland management practices and conversion from cropland to grassland improve soil carbon stocks.

376 citations


Journal ArticleDOI
TL;DR: In this paper, the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks.
Abstract: Biochar, the by-product of thermal decomposition of organic materials in an oxygen-limited environment, is increasingly being investigated due to its potential benefits for soil health, crop yield, carbon (C) sequestration, and greenhouse gas (GHG) mitigation. In this review, we discuss the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks. Biochar soil amendment improves crop productivity mainly by increasing nutrient use efficiency and water holding capacity. However, improvements to crop production are often recorded in highly degraded and nutrient-poor soils, while its application to fertile and healthy soils does not always increase crop yield. Since biochars are produced from a variety of feedstocks, certain contaminants can be present. Heavy metals in biochar may affect plant growth as well as rhizosphere microbial and faunal communities and functions. Biochar manufacturers should get certification that their products meet International Biochar Initiative (IBI) quality standards (basic utility properties, toxicant assessment, advanced analysis, and soil enhancement properties). The long-term effects of biochar on soil functions and its fate in different soil types require immediate attention. Biochar may change the soil biological community composition and abundance and retain the pesticides applied. As a consequence, weed control in biochar-amended soils may be difficult as preemergence herbicides may become less effective.

331 citations


Journal ArticleDOI
TL;DR: It is concluded that biochar is a potentially effective amendment to reverse or to prevent acidification in acid soils.

325 citations


Book
08 Dec 2017
TL;DR: In this paper, a specialized monograph on soil physical conditions and root-system relations is presented, which attempts to explain the importance of physical properties of soil by showing how they affect root growth and functions; and on the other hand, how roots themselves change their environment.
Abstract: This book is a specialized monograph on soil physical conditions and root-system relations. It attempts to explain the importance of physical properties of soil by showing how they affect root growth and functions; and on the other hand, how roots themselves change their environment. Emphasis is placed on the interactive effects of soil physical factors. An attempt has been made to analyze the possibilities of the root system‘s modification by both soil and plant management.The book is addressed to research workers and advanced students in soil and plant sciences and may also be of interest to agronomists and related specialists.

Journal ArticleDOI
TL;DR: It is argued that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized and it is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources.

Journal ArticleDOI
TL;DR: The CarboSMS consortium federates French researchers working on these mechanisms and their effects on C stocks in a local and global change setting (land use, agricultural practices, climatic and soil conditions, etc.). This article is a synthesis of this consortium's first seminar.
Abstract: The international 4 per 1000 initiative aims at supporting states and non-governmental stakeholders in their efforts towards a better management of soil carbon (C) stocks. These stocks depend on soil C inputs and outputs. They are the result of fine spatial scale interconnected mechanisms, which stabilise/destabilise organic matter-borne C. Since 2016, the CarboSMS consortium federates French researchers working on these mechanisms and their effects on C stocks in a local and global change setting (land use, agricultural practices, climatic and soil conditions, etc.). This article is a synthesis of this consortium’s first seminar. In the first part, we present recent advances in the understanding of soil C stabilisation mechanisms comprising biotic and abiotic processes, which occur concomitantly and interact. Soil organic C stocks are altered by biotic activities of plants (the main source of C through litter and root systems), microorganisms (fungi and bacteria) and ‘ecosystem engineers’ (earthworms, termites, ants). In the meantime, abiotic processes related to the soil-physical structure, porosity and mineral fraction also modify these stocks. In the second part, we show how agricultural practices affect soil C stocks. By acting on both biotic and abiotic mechanisms, land use and management practices (choice of plant species and density, plant residue exports, amendments, fertilisation, tillage, etc.) drive soil spatiotemporal organic inputs and organic matter sensitivity to mineralisation. Interaction between the different mechanisms and their effects on C stocks are revealed by meta-analyses and long-term field studies. The third part addresses upscaling issues. This is a cause for major concern since soil organic C stabilisation mechanisms are most often studied at fine spatial scales (mm–μm) under controlled conditions, while agricultural practices are implemented at the plot scale. We discuss some proxies and models describing specific mechanisms and their action in different soil and climatic contexts and show how they should be taken into account in large scale models, to improve change predictions in soil C stocks. Finally, this literature review highlights some future research prospects geared towards preserving or even increasing C stocks, our focus being put on the mechanisms, the effects of agricultural practices on them and C stock prediction models.

Journal ArticleDOI
TL;DR: Findings revised the previous notion that N addition inhibited the microbial growth and showed that the shifts in the F:B and GP:GN mainly resulted from enhanced N availability due to N addition rather than soil acidification.
Abstract: Anthropogenic nitrogen (N) deposition is expected to increase substantially and continuously in the future. Soil N availability regulates microbial communities and the decomposition and formation of soil organic matter, which have great impacts on global carbon (C) cycling. We conducted a meta-analysis based on 454 N-addition experiments in order to synthesize the patterns and mechanisms of responses by soil microbial communities to N addition in various biomes (i.e., boreal forest, temperate forest, tropical/subtropical forest, grassland, and desert). Results showed that the effects of N addition on the total microbial biomass varied depending on biome types, methodologies (fumigation–extraction technique vs. total phospholipid fatty acid), and N-addition rates. Nitrogen addition consistently decreased the microbial C:N and fungi to bacteria ratio (F:B), but increased Gram positive bacteria to Gram negative bacteria ratio (GP:GN) among biome types and N-addition rates. Nitrogen addition increased soil N availability and thereby resulted in soil acidification. Regression technique and principal component analyses showed that the shifts in the F:B and GP:GN mainly resulted from enhanced N availability due to N addition rather than soil acidification. When the N addition rate is lower than 100 kg N ha−1 year−1, about ten times higher than of global normal rate, the positive response of microbial growth was found. Overall, these findings revised the previous notion that N addition inhibited the microbial growth. Microbial species shifts might accentuate or mitigate the effects of alterations in microbial biomass at the ecosystem level, highlighting the critical role of microbial community composition in soil ecosystem functions under N deposition scenarios.

Journal ArticleDOI
12 Jul 2017-PLOS ONE
TL;DR: Overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale and shows that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use, plant life cycle, and climatic zone.
Abstract: Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale.

Journal ArticleDOI
TL;DR: It is suggested that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs.
Abstract: Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs.

Journal ArticleDOI
TL;DR: Actinobacteria help sustainably in improving soil health by formation and stabilization of compost piles, formation of stable humus and combine with other soil microorganisms in breaking down the tough plant residues to maintain the biotic equilibrium of soil by cooperating with nutrient cycling.

Journal ArticleDOI
TL;DR: Deep 16S amplicon sequencing is used to investigate bacterial community characteristics in a fluvo-aquic soil treated for 24 years with inorganic fertilizers and organics and provides certain theoretical support for selection of rational fertilization strategies.
Abstract: Fertilization has a large impact on the soil microbial communities, which play pivotal roles in soil biogeochemical cycling and ecological processes. While the effects of changes in nutrient availability due to fertilization on the soil microbial communities have received considerable attention, specific microbial taxa strongly influenced by long-term organic and inorganic fertilization, their potential effects and associations with soil nutrients remain unclear. Here we use deep 16S amplicon sequencing to investigate bacterial community characteristics in a fluvo-aquic soil treated for 24 years with inorganic fertilizers and organics (manure and straw)-inorganic fertilizers, and uncover potential links between soil nutrient parameters and specific bacterial taxa. Our results showed that combined organic-inorganic fertilization increased soil organic carbon (SOC) and total nitrogen (TN) contents and altered bacterial community composition, while inorganic fertilization had little impact on soil nutrients and bacterial community composition. SOC and TN emerged as the major determinants of community composition. The abundances of specific taxa, especially Arenimonas, Gemmatimonas and an unclassified member of Xanthomonadaceae, were substantially increased by organic-inorganic amendments rather than inorganic amendments only. A co-occurrence based network analysis demonstrated that SOC and TN had strong positive associations with some taxa (Gemmatimonas and the members of Acidobacteria subgroup 6, Myxococcales, Betaproteobacteria and Bacteroidetes), and Gemmatimonas, Flavobacterium and an unclassified member of Verrucomicrobia were identified as the keystone taxa. These specific taxa identified above are implicated in the decomposition of complex organic matters and soil carbon, nitrogen and phosphorus transformations. The present work strengthens our current understanding of the soil microbial community structure and functions under long-term fertilization management and provides certain theoretical support for selection of rational fertilization strategies.

Journal ArticleDOI
TL;DR: A meta-analysis of RPE values taken from 31 publications showed that, on average, the RPE enhanced soil organic carbon mineralization rate by 59% across all studies, which implies that the R PE may persist much longer than previously believed because it impacts stabilized soil carbon more than labile carbon as the length of experimental duration increases.
Abstract: Rhizosphere priming is crucial for regulating soil carbon and nitrogen biogeochemical cycles. An appreciable number of studies have been conducted to quantify the rhizosphere priming effect (RPE), and have shown that the RPE is sensitive to changes of plant and soil conditions. These diverse results across individual studies offer us an opportunity to explore for potential general patterns and variability. In this study, we conducted a meta-analysis of RPE values taken from 31 publications. Our results showed that, on average, the RPE enhanced soil organic carbon mineralization rate by 59% across all studies. The magnitudes of the RPE significantly varied among plant types and soil texture. Within plant types, woody species showed the highest RPE followed by grasses while crops had the lowest level of the RPE, indicating that plant traits and physiology may exert important controls on the RPE. Soils with finer texture tended to produce stronger RPEs than soils with coarser texture, suggesting that interactions between the rhizosphere and the soil matrix may modulate the RPE. Furthermore, the level of the RPE is positively correlated with aboveground plant biomass, but surprisingly not with root biomass which is the commonly believed key variable for influencing the RPE. In addition, the RPE increased with the length of experimental duration, which implies that the RPE may persist much longer than previously believed because it impacts stabilized soil carbon more than labile carbon as the length of experimental duration increases. Overall, the results from this meta-analysis further illustrate several complex features of the RPE and call for future attentions to decipher this complexity.

Journal ArticleDOI
TL;DR: In this paper, six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700°C, respectively.
Abstract: Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils. Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling. The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate. It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.

Journal ArticleDOI
20 Sep 2017-Geoderma
TL;DR: In this article, soil fauna may affect soil organic matter (SOM) dynamics not only by assimilating litter but also by modifying the soil environment at many spatiotemporal scales.

Journal ArticleDOI
TL;DR: It is concluded that exudates can stimulate microbes to decompose labile SOM and release N without concomitant changes in microbial biomass, yet the investment of plants to trigger this effect may be greater in N-rich soils.
Abstract: Theory and experiments suggest that rhizodeposition can accelerate N-cycling by stimulating microbial decomposition of soil organic matter (SOM). However, there are remarkably few experimental demonstrations on the degree to which variations in root exudation alter rhizosphere N dynamics in the field. We conducted a series of in situ substrate addition experiments and a modeling exercise to investigate how exudate mimics and enzyme solutions (at varying concentrations) influence rhizosphere SOM and N dynamics in a loblolly pine ( Pinus taeda ) plantation (Duke Forest). Exudates were added semi-continuously to unfertilized and fertilized soils in summer and fall; enzymes were added during the following summer. Exudate additions enhanced the microbial biomass specific activities of enzymes that degrade fast-cycling N pools (i.e., amino acids and amino sugars), and increased microbial allocation to N-degrading compounds. More, such effects occurred at low exudate concentrations in unfertilized soil and at higher concentrations in fertilized soil. Direct additions of a subset of enzymes (amino sugar- and cellulose-degrading) to soils increased net N mineralization rates, but additions of enzymes that cleave slow-cycling SOM did not. We conclude that exudates can stimulate microbes to decompose labile SOM and release N without concomitant changes in microbial biomass, yet the investment of plants to trigger this effect may be greater in N-rich soils.

Journal ArticleDOI
TL;DR: In this article, the authors explored the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity in the Yellow River Delta, where two halophytes, sesbania and seashore mallow were chosen as the tested plants in a 52-day pot experiment.
Abstract: Nutrient deficiency and salt stress (sodium, Na+) strongly limited the productivity of the degraded coastal soils in the Yellow River Delta. Biochar-based functional materials have been considered as a promising amendment to solving the problem of global soil security (e.g., erosion, fertility loss, acidification, and salinization). Therefore, this study aimed to explore the potential of using a biochar-compost amendment (BCA) to improve the coastal soil properties and productivity. The BCA was produced from composting of biochar and additives including seafood shell powder, peanut shell, commercial humate, and inorganic nutrients. Two halophytes, sesbania (Sesbania canabina (Retz.) Pers) and seashore mallow (Kosteletzkya virginica), were chosen as the tested plants in a 52-day pot experiment. BCA was added as the rates of 0, 1.5, 5, and 10 % (w/w). At the end of the incubation, the shoot height, biomass, and root morphological parameters including length, tips, and surface area were measured, as well as the properties (e.g., soil organic matter (SOM) content and cation exchange capacity (CEC)) of the rhizosphere and non-rhizosphere soils. The BCA application at 1.5 % enhanced the growth of sesbania and seashore mallow and increased their total biomass by 309 and 70.8 %, respectively, while significantly inhibited both the halophyte growths at 10 %. Similarly, both the halophyte root morphologies (e.g., length and tips) significantly increased by BCA addition at 1.5 %. The promoting growth of the both halophytes could be resulted from the improvement of soil properties such as the increased SOM and CEC, the decreased amount of the exchangeable sodium (Ex-Na) and exchangeable sodium percentage (ESP), and the rhizosphere effect (e.g., decreased soil pH). The higher rate of BCA addition (e.g., 10 %) sharply increased soil salinity, responsible for the inhibition of both the halophyte growths. Although BCA addition may directly supply much nitrogen (N) for the soils, N bioavailability for both halophytes was not largely improved. The short-term laboratory pot experiments revealed that producing the biochar-compost with desired properties (e.g., BCA) could be a feasible alternative to remediate the degraded coastal soil in the Yellow River Delta. Moreover, the addition of BCA should be kept at an optimal level, which may produce expected positive results. Our results will be helpful for supporting the strategy of designing right biochar-compost for the right soil.

Journal ArticleDOI
TL;DR: This is the author accepted manuscript and the final version of the manuscript is available from American Chemical Society via the DOI in this record.
Abstract: This is the author accepted manuscript. The final version is available from American Chemical Society via the DOI in this record.

Journal ArticleDOI
TL;DR: It is suggested that the soil microorganisms respond differently to the inputs of inorganic and organic fertilizers in paddy soil, which offers novel insights into the potential of managing soil microbiomes for sustainable agricultural productivity.

Journal ArticleDOI
TL;DR: The results showed that microbial community structure varied among sites, and it was significantly affected by soil environmental factors such as pH, soil organic matter (SOM), Cd, Pb and Zn.

Journal ArticleDOI
01 Jun 2017-Geoderma
TL;DR: In this article, an overview of current understanding on the interaction between soil OM and selenium in soil-plant systems is given, highlighting that OM can immobilize Se by both biotic and abiotic mechanisms and reduce its bioavailability but the release of OM-immobilized Se through mineralization should not be overlooked.

Journal ArticleDOI
02 Feb 2017-Nature
TL;DR: Evaluated treeline ecotones in seven temperate regions of the world find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground- layer plant community nitrogen to phosphorus ratios across all regions.
Abstract: Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.

Journal ArticleDOI
TL;DR: In this article, the effect of soil microbes on the biosorption and bioavailability of heavy metals, the mechanisms of heavy metal sequestration by plant and microbes, and the effects of pollution on soil microbial diversity and activities.
Abstract: Heavy metal pollution is a global issue due to health risks associated with metal contamination. Although many metals are essential for life, they can be harmful to man, animal, plant and microorganisms at toxic levels. Occurrence of heavy metals in soil is mainly attributed to natural weathering of metal-rich parent material and anthropogenic activities such as industrial, mining, agricultural activities. Here we review the effect of soil microbes on the biosorption and bioavailability of heavy metals; the mechanisms of heavy metals sequestration by plant and microbes; and the effects of pollution on soil microbial diversity and activities. The major points are: anthropogenic activities constitute the major source of heavy metals in the environment. Soil chemistry is the major determinant of metal solubility, movement and availability in the soil. High levels of heavy metals in living tissues cause severe organ impairment, neurological disorders and eventual death. Elevated levels of heavy metals in soils decrease microbial population, diversity and activities. Nonetheless, certain soil microbes tolerate and use heavy metals in their systems; as such they are used for bioremediation of polluted soils. Soil microbes can be used for remediation of contaminated soils either directly or by making heavy metals bioavailable in the rhizosphere of plants. Such plants can accumulate 100 mg g−1 Cd and As; 1000 mg g−1 Co, Cu, Cr, Ni and 10,000 mg g−1 Pb, Mn and Ni; and translocate metals to harvestable parts. Microbial activity changes soil physical properties such as soil structure and biochemical properties such as pH, soil redox state, soil enzymes that influence the solubility and bioavailability of heavy metals. The concept of ecological dose (ED50) and lethal concentration (LC50) was developed in response to the need to easily quantify the influence of pollutants on microbial-mediated ecological processes in various ecosystems.

Book ChapterDOI
12 Jul 2017
TL;DR: The chemical composition of soil lipids is complex, as the result of the nature and reactivity of the various compounds added to soil from plant litter, animals, insects, and microorganisms as mentioned in this paper.
Abstract: Soil organic matter refers to all organic carbon-containing substances in the soil, ranging from relatively undecomposed plant litter and microbial remains to highly polymerized, stable products of degradation and synthesis. Most lipids in soils are probably products of partially decomposed and undecomposed plants and animals, although lipids of microbial origin are also present. The chemical composition of soil lipids is complex, as the result of the nature and reactivity of the various compounds added to soil from plant litter, animals, insects, and microorganisms. The amount of lipids in any soil represents the net result of all processes, such as the addition of plant residues and microbial synthesis and degradation. Soil microorganisms, under adequate environmental conditions, possess the enzymatic capability to degrade low molecular weight fatty acids, but no report mentions the biodgradation of long-chain alkanes and polyesters with 30 to 100 carbon atoms, which are common in agricultural soils.