scispace - formally typeset
Search or ask a question
Topic

Soil stabilization

About: Soil stabilization is a research topic. Over the lifetime, 3161 publications have been published within this topic receiving 48437 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed study on the behavior and use of waste plastic in soil improvement is presented in this paper, where a series of compaction, direct shear and California bearing ratio (CBR) tests have been performed with varying percentages of plastic strips and also with different aspect ratios in terms of size.
Abstract: With rapid advancements in technology globally, the use of plastics such as polyethylene bags, bottles etc. is also increasing. The disposal of thrown away wastes pose a serious challenge since most of the plastic wastes are non-biodegradable and unfit for incineration as they emit harmful gases. Soil stabilization improves the engineering properties of weak soils by controlled compaction or adding stabilizers like cement, lime etc. but these additives also have become expensive in recent years. This paper presents a detailed study on the behavior and use of waste plastic in soil improvement. Experimental investigation on reinforced plastic soil results showed that, plastic can be used as an effective stabilizer so as to encounter waste disposal problem as well as an economical solution for stabilizing weak soils. Plastic reinforced soil behaves like a fiber reinforced soil. This study involves the investigation of the effect of plastic bottle strips on silty sand for which a series of compaction, direct shear and California bearing ratio (CBR) tests have been performed with varying percentages of plastic strips and also with different aspect ratios in terms of size. The results reflect that there is significant increment in maximum dry unit weight, Shear Strength Parameters and CBR value with plastic reinforcement in soil. The quantum of improvement in the soil properties depends on type of soil, plastic content and size of strip. It is observed from the study that, improvement in engineering properties of silty sand is achieved at 0.4% plastic content with strip size of (15 mm × 15 mm).

50 citations

Journal ArticleDOI
TL;DR: The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are elucidated and considerably improve the mechanical properties and durability of both marl and sand.
Abstract: This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.

50 citations

Journal ArticleDOI
TL;DR: In this paper, a model based on genetic algorithm is proposed to predict variation in the values of CBR of the sub-grade soil with the addition of a specific percentage of fly ash.

49 citations

Journal ArticleDOI
TL;DR: In this article, a modification of black cotton soil using Ca Cl2 and rice-husk-ash (RHA) is presented, which resulted in two favorable combinations of soil +0.5% Ca Cl 2 +8% RHA and soil + 1% Ca CL 2 +6% R HA with nonswelling properties, while retaining high unconfined compressive strength values.
Abstract: Among the several remedial techniques suggested to combat the damages caused by expansive soils, the use of sand cushion and cohesive nonswelling (CNS) soil cushion were widely accepted, especially for light weight structures such as floorings, pavements, and canal linings, which cover large areas. CNS cushion is preferred to sand cushion in view of the sceptical performance of sand cushion at several work sites. However, various investigators have reported the nonavailability of suitable CNS materials at many project sites and in such circumstances, it is also suggested to prepare the artificial CNS materials by mixing suitable admixtures to the native clay. The present work deals with the modification of black cotton soil using Ca Cl2 and rice-husk-ash (RHA), which resulted in two favorable combinations of soil +0.5% Ca Cl2 +8% RHA and soil +1% Ca Cl2 +6% RHA with nonswelling properties, while retaining high unconfined compressive strength values. The mix of soil +0.5% Ca Cl2 +8% RHA was taken for furth...

49 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed practical recommendations for soil selection, stabilizer treatment, and on-site compaction for rammed earth, based on a recent set of 219 stabilization experiments.
Abstract: Rammed earth possesses environmental advantages over most other competing construction materials. However, if it is to be more routinely used in the construction of modern, sustainable buildings, its material properties and production processes must be properly quantified. This paper proposes practical recommendations for soil selection, stabilizer treatment, and on-site compaction for rammed earth, based on a recent set of 219 stabilization experiments. The purpose of the recommendations is to maximize the probability of constructing rammed earth walls that meet or exceed a compressive strength criterion of 2 MPa. The recommendations cover: (1) Quantifying the natural soil properties of linear shrinkage and texture in a staged sequence in order to identify suitable soils to stabilize (and to reject unsuitable soils); (2) Quantifying the amounts of cement and/or lime to be added to the selected soil according to the values of soil properties measured; and (3) Quantifying the forces involved in on...

49 citations


Network Information
Related Topics (5)
Aggregate (composite)
31K papers, 354.1K citations
80% related
Portland cement
27.4K papers, 487.4K citations
79% related
Hydraulic conductivity
12K papers, 339.7K citations
76% related
Landslide
24.6K papers, 472.1K citations
76% related
Fly ash
47.6K papers, 675.6K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202364
2022128
2021213
2020167
2019173
2018168