scispace - formally typeset
Search or ask a question
Topic

Soil structure interaction

About: Soil structure interaction is a research topic. Over the lifetime, 3653 publications have been published within this topic receiving 48890 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new ground improvement method is proposed using pervious concrete piles to provide high permeability while also providing higher stiffness and strength, which are independent of surrounding soil confinement.
Abstract: Granular column ground-improvement methods are widely used to improve bearing capacity and provide a drainage path. However, the behavior of granular columns depends on the confinement provided by the surrounding soil, which limits their use in poor soils. A new ground-improvement method is proposed using pervious concrete piles to provide high permeability while also providing higher stiffness and strength, which are independent of surrounding soil confinement. Building on prior research on the behavior of vertically loaded pervious concrete piles and granular columns, this paper investigates the behavior of laterally-loaded pervious concrete piles and the effects of installation on their response. Two fully-instrumented lateral load tests were conducted on a precast and cast-in-place pile using different installation methods. Advanced sensors measured the soil–structure interaction during installation and under lateral loading. Test results confirmed that laterally-loaded pervious concrete groun...

31 citations

Journal ArticleDOI
TL;DR: In this article, a vibrating barrier (ViBa) is proposed to protect monopile structures from earthquake induced ground motion by modeling the ground motion as zero-mean quasi-stationary response-spectrum-compatible Gaussian stochastic process, the soil as visco-elastic medium and the target monopiled-structure as a linear behaving structure.

31 citations

Journal ArticleDOI
TL;DR: In this article, the horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.
Abstract: Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics. Two practical pile inclinations of 5° and 10° in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered. Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles. Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases. Distinct values of horizontal impedance functions are obtained for the ‘positive’ and ‘negative’ cycles of harmonic loadings, leading to asymmetric force-displacement relationships for the inclined piles. Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses, and the results from the numerical models are in good agreement with the experimental data. Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effects of seepage conditions on soil resistance to caisson penetration with a particular focus on how frictional resistance and tip resistance are differently affected.

31 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored the concept of shallow soil improvement as a means to locally increase soil strength and thus limit rocking-induced settlement, where failure may be contained in a soil layer of known properties that extends to a shallow depth beneath the foundation.
Abstract: The nonlinear response of shallow foundations when subjected to combined loading has attracted the attention of the research engineering community over the last few decades, providing promising evidence for incorporation of such response in design provisions. Failure in the form of soil yielding or foundation uplifting may accommodate high ductility demand and increase the safety margins of the whole structure. However, increased permanent displacement and rotation may occur. This paper explores the concept of shallow soil improvement as a means to locally increase soil strength and thus limit rocking-induced settlement. Bearing in mind that the rocking mechanism is relatively shallow, failure may be contained in a soil layer of known properties that extends to a shallow depth beneath the foundation. The performance of a system in poor soil conditions, on an ideal soil profile, and on improved soil profiles was explored through a series of centrifuge tests at the Center for Earthquake Engineering ...

31 citations


Network Information
Related Topics (5)
Buckling
30.3K papers, 465.8K citations
80% related
Constitutive equation
24.9K papers, 665.1K citations
78% related
Compressive strength
64.4K papers, 1M citations
77% related
Stiffness
26.2K papers, 424.4K citations
76% related
Landslide
24.6K papers, 472.1K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022179
2021209
2020174
2019182
2018190