scispace - formally typeset
Search or ask a question
Topic

Soil structure interaction

About: Soil structure interaction is a research topic. Over the lifetime, 3653 publications have been published within this topic receiving 48890 citations.


Papers
More filters
Proceedings ArticleDOI
21 Jun 2011
TL;DR: In this article, a fifteen storey moment resisting building frame is selected in conjunction with three different soil deposits with shear wave velocity less than 600m/s, and the design sections are defined after applying dynamic nonlinear time history analysis based on inelastic design procedure using elastic-perfectly plastic behaviour of structural elements.
Abstract: Soil-Structure Interaction (SSI) has progressed rapidly in the second half of 20th century stimulated mainly by requirements of the nuclear power and offshore industries to improve the seismic safety. In this study, a fifteen storey moment resisting building frame is selected in conjunction with three different soil deposits with shear wave velocity less than 600m/s. The design sections are defined after applying dynamic nonlinear time history analysis based on inelastic design procedure using elastic-perfectly plastic behaviour of structural elements. These frames are modelled and analysed employing Finite Difference approach using FLAC 2D software under two different boundary conditions, namely fixed-base (no soil-structure interaction), and considering soil-structure interaction. Fully nonlinear dynamic analyses under the influence of different earthquake records are conducted and the results of inelastic behaviour of the structural model are compared. Variations of the shear modulus ratio with the shear strain are included in the nonlinear dynamic analysis. The results indicate that the inter-storey drifts of the structural model resting on soil types De and Ee (according to the Australian standard) substantially increase when soil-structure interaction is considered for the above mentioned soil types. Performance levels of the structures change from life safe to near collapse when dynamic soil-structure interaction is incorporated. Therefore, the conventional inelastic design procedure excluding SSI is no longer adequate to guarantee the structural safety for the building frames resting on soft soil deposits. Design engineers need to address the effects of dynamic SSI precisely in their design especially for construction projects on soft soils.

26 citations

Journal ArticleDOI
TL;DR: In this paper, boundary element procedures are employed in the frequency and time domain to determine the dynamic response of rigid foundations and flexible elastic structures when placed on or embedded in an elastic soil medium under plane strain conditions.

26 citations

Journal ArticleDOI
TL;DR: In this article, the underground response spectrum method (RSM) was developed for the seismic analysis of the underground structures including SSI, and the numerical examples are presented to demonstrate the feasibility of the RSM for the SSI analysis model of underground structure.
Abstract: The response spectrum method (RSM) has been incorporated into many codes for seismic design of aboveground structures since 1950s. However, no RSM is presented in details for the seismic design of underground structures due to the complexity of seismic soil–structure interaction (SSI). In this paper, the RSM is developed for the seismic analysis of the underground structures including SSI. First, the underground design response spectrum is derived using two different procedures from the ground design response spectrum that is commonly available in most seismic design codes. Second, the SSI analysis model consisting of the underground structure and its adjacent soil is established with the roller side boundaries and the bottom boundary subjected to the underground response spectrum. Third, the RSM is applied to the SSI analysis model to estimate the structural response under the underground response spectrum. Finally, the numerical examples are presented to demonstrate the feasibility of the RSM for the SSI analysis model of underground structure.

26 citations

Journal ArticleDOI
TL;DR: In this paper, a building-foundation system considered in a linear elastic N- storey asymmetric building with a rigid footing resting on the surface of linear elastic soil half-space was analyzed.

26 citations


Network Information
Related Topics (5)
Buckling
30.3K papers, 465.8K citations
80% related
Constitutive equation
24.9K papers, 665.1K citations
78% related
Compressive strength
64.4K papers, 1M citations
77% related
Stiffness
26.2K papers, 424.4K citations
76% related
Landslide
24.6K papers, 472.1K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022179
2021209
2020174
2019182
2018190