scispace - formally typeset
Search or ask a question
Topic

Soil structure interaction

About: Soil structure interaction is a research topic. Over the lifetime, 3653 publications have been published within this topic receiving 48890 citations.


Papers
More filters
Dissertation
01 Jan 2003
TL;DR: In this paper, the effects of soil heterogeneity were investigated for a strip foundation placed on elastic perfectly plastic soil and subjected to vertical loads, and the results of the parametric study are presented as simple regression equations (response surfaces) to estimate probabilistic characteristics of foundation responses - namely mean and coefficient of variation of bearing capacity and bearing pressures at damage criteria.
Abstract: Many physical systems in general, and soil materials in particular, exhibit relatively large spatial variability in their properties, even within so-called homogeneous layers. Physical descriptions of this spatial variability are not feasible owing to the prohibitive cost of sampling and uncertainty induced by measurement errors. This variability is widely dealt with as uncertainty in soil properties. Probabilistic methods currently used to represent this uncertainty often suffer from many limitations. For instance, they often only account for uncertainty in estimating the average soil properties. A probabilistic approach was developed here to investigate the effects of soil heterogeneity and provide practical recommendations and guidelines to account for these effects in routine engineering design. -- There are still many unknown consequences of spatial variability. It is shown here that natural variability of soil properties within geologically distinct and so-called uniform layers affects soil behaviour. This study found that the phenomena governed by highly nonlinear constitutive relations are the most affected by spatial variability of soil properties. The bearing capacity of shallow foundations and lateral interaction loads of buried pipelines are functions of soil shear strength and, therefore, are governed by highly nonlinear stress-strain relationships. -- The effects of soil heterogeneity were investigated for a strip foundation placed on elastic perfectly plastic soil and subjected to vertical loads. From a comparison of Monte Carlo simulations, accounting for the spatial variability of soil strength, and deterministic analyses assuming uniform soil properties, it was found that the soil heterogeneity changes the mechanical behaviour of foundations. A parametric study was performed to quantify the effects of soil heterogeneity parameters on foundation response; the studied cases were pre-designed using statistical methods (Design of Experiments, DOE). It was observed that soil strength's degree of variation and probability distribution, which characterize the amount of weak pockets of soil, have the most effects on the foundation behaviour for the range of parameters considered. Correlation distances also affected the variability of foundation responses owing to local averaging effects. -- The results of the parametric study are presented as simple regression equations (response surfaces) to estimate probabilistic characteristics of foundation responses - namely mean and coefficient of variation of bearing capacity and bearing pressures at damage criteria. They were used to calibrate partial design factors for limit state design methods, LSD, and estimate characteristic values for routine engineering design. The results, in terms of regression equations, can also be employed directly in level II & III reliability analysis methods. -- A similar study with a limited scope was performed for lateral loading of a buried pipeline. Only one burial depth (geometrical configuration) was taken for the pipeline. Among the probabilistic characteristics of soil considered here, the degree of variability of soil strength was found to be the most significant factor affecting pipeline response. The response and failure mechanism of a laterally loaded buried pipeline is complicated and is dependent on several deterministic factors such as burial depth, pipe-soil interaction coefficients, and soil weight. The study could be further developed to account for other probabilistic characteristics and deterministic parameters, and their corresponding interactions.

23 citations

Reference BookDOI
01 Jan 1994
TL;DR: In this paper, a number of different methods of analysis and modelling, including the boundary element method, the finite element method and a range of classical methods, are used to answer some of the questions associated with soil-structure interaction.
Abstract: This book describes how a number of different methods of analysis and modelling, including the boundary element method, the finite element method, and a range of classical methods, are used to answer some of the questions associated with soil-structure interaction.

23 citations

Journal ArticleDOI
TL;DR: In this article, the phase-amplitude modification procedure is presented to deconvolve both horizontal and vertical target (design) surface ground motions in multi-layered, equivalent-linear viscoelastic media for use in finite element time-domain structural analyses.

23 citations

Journal ArticleDOI
TL;DR: In this article, the effects of soil-structure interaction on the seismic response of an isolated three span motorway overcrossing founded on piles are investigated by considering a real bridge located along the A14 Motorway in central Italy.

23 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive investigation into the influence of key mechanical and geometrical parameters on horizontal impedance of square foundations resting on or embedded in a two-layer soil deposit is presented.

23 citations


Network Information
Related Topics (5)
Buckling
30.3K papers, 465.8K citations
80% related
Constitutive equation
24.9K papers, 665.1K citations
78% related
Compressive strength
64.4K papers, 1M citations
77% related
Stiffness
26.2K papers, 424.4K citations
76% related
Landslide
24.6K papers, 472.1K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022179
2021209
2020174
2019182
2018190