scispace - formally typeset
Search or ask a question
Topic

Soil structure interaction

About: Soil structure interaction is a research topic. Over the lifetime, 3653 publications have been published within this topic receiving 48890 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the optimized parameters for tuned mass dampers (TMDs) to decrease the earthquake vibrations of tall buildings; involving soil-structure interaction (SSI) effects.

108 citations

Journal ArticleDOI
TL;DR: In this article, simplified analytical models for the lateral harmonic response of single piles and pile groups in layered soil were developed for the impact of pile-to-soil interplay, represented by a dynamic Winkler formulation based on frequency-dependent springs and dashpots.
Abstract: Simplified analytical models are developed for the lateral harmonic response of single piles and pile groups in layered soil. Pile-to-soil interplay is represented by a dynamic Winkler formulation based on frequency-dependent springs and dashpots. For pile-to-pile interaction, the wave field originating from each oscillating (“source”) pile and the diffraction of this field by the adjacent (“receiver”) piles are considered. The response of single piles and pile pairs is evaluated both numerically (through a transfer-matrix formulation) and analytically (introducing an efficient virtual-work approximation). Closed-form solutions are obtained: (1) for the impedance of single piles; (2) for the dynamic interaction factors between two piles; and (3) for the “additional” internal forces (“distress”) developing in grouped piles because of pile-to-pile interaction, a phenomenon frequently ignored in current methods of analysis. Both swaying and rocking vibrational modes are considered. The effect of pile length ...

108 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of soil in the collapse of the elevated Hanshin Expressway during the 1995 Kobe earthquake, and found that the impact of soil on the seismic performance of the bridge was multiple: first, it modified the bedrock motion so that the frequency content of the resulting surface motion became disadvantageous for the particular structure.
Abstract: An investigation is presented of the collapse of a 630 m segment (Fukae section) of the elevated Hanshin Expressway during the 1995 Kobe earthquake. The earthquake has, from a geotechnical viewpoint, been associated with extensive liquefactions, lateral soil spreading, and damage to waterfront structures. Evidence is presented that soil–structure interaction (SSI) in non-liquefied ground played a detrimental role in the seismic performance of this major structure. The bridge consisted of single circular concrete piers monolithically connected to a concrete deck, founded on groups of 17 piles in layers of loose to dense sands and moderate to stiff clays. There were 18 spans in total, all of which suffered a spectacular pier failure and transverse overturning. Several factors associated with poor structural design have already been identified. The scope of this work is to extend the previous studies by investigating the role of soil in the collapse. The following issues are examined: (1) seismological and geotechnical information pertaining to the site; (2) free-field soil response; (3) response of foundation-superstructure system; (4) evaluation of results against earlier studies that did not consider SSI. Results indicate that the role of soil in the collapse was multiple: First, it modified the bedrock motion so that the frequency content of the resulting surface motion became disadvantageous for the particular structure. Second, the compliance of soil and foundation altered the vibrational characteristics of the bridge and moved it to a region of stronger response. Third, the compliance of the foundation increased the participation of the fundamental mode of the structure, inducing stronger response. It is shown that the increase in inelastic seismic demand in the piers may have exceeded 100% in comparison with piers fixed at the base. These conclusions contradict a widespread view of an always-beneficial role of seismic SSI. Copyright © 2005 John Wiley & Sons, Ltd.

108 citations

Journal ArticleDOI
TL;DR: In this article, two equivalent semi-discrete formulations are presented for the problem of the transient response of soil-structure interaction systems to seismic excitation, considering linear behaviour of the soil material and arbitrary non-linear structural properties.
Abstract: Two equivalent semi-discrete formulations are presented for the problem of the transient response of soil-structure interaction systems to seismic excitation, considering linear behaviour of the soil material and arbitrary non-linear structural properties. One formulation results in a direct method of analysis in which the motion in the structure and the entire soil medium, rendered finite by an artificial absorbing boundary, is determined simultaneously. The other represents a substructuring technique in which the structure and the soil are analysed separately. The forces induced in the discretized system by the incident seismic motion are obtained as part of the general formulation by using the free-field motion of the unaltered soil as the earthquake input. It is shown that these forces act within the soil region in the direct method, but only on the soil-structure interface in the substructure formulation. Both sets of forces, however, involve only the displacements and tractions acting on the fictitious surface in the unaltered (linear) soil which coincides with the soil-structure interface of the complete system. It is shown, further, that the free-field displacements alone define a minimal set of data for evaluating the seismic response of the structure, since the tractions and displacements on that surface are interrelated. In practice, the minimal set must be obtained by extrapolating the available information, as the free-field ground motion at a site is usually specified at a single reference point.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of tunneling beneath buried pipelines and the relationship between soil strains and pipeline bending behavior was examined. But, the authors focused on the tunnel deformation rather than the pipe bending behavior.
Abstract: The paper examines the problem of tunneling beneath buried pipelines and the relationship between soil strains and pipeline bending behavior. Data are presented from centrifuge tests in which tunnel volume loss was induced in sand beneath pipelines of varying stiffness properties. The model tunnel and pipelines were all placed at a Perspex wall of the centrifuge strong box such that image-based deformation analyses could be performed. The method provided detailed data of subsurface soil and pipe displacements and illustrated the soil-pipe interaction mechanisms that occurred during tunnel volume loss, including the formation of a gap beneath the pipes. The relationship between tunnel volume loss, soil strain, and pipe bending behavior is illustrated. Experimental results of pipe bending moments are compared against predictions: (1) assuming the pipe simply follows greenfield displacements; (2) using an elastic continuum solution; and (3) using a new method in which an "out-of-plane" shear argument, due to soil-pipe interaction, is introduced into the elastic continuum solution. It is shown that the new method gives the best prediction of experimental pipe bending moments.

108 citations


Network Information
Related Topics (5)
Buckling
30.3K papers, 465.8K citations
80% related
Constitutive equation
24.9K papers, 665.1K citations
78% related
Compressive strength
64.4K papers, 1M citations
77% related
Stiffness
26.2K papers, 424.4K citations
76% related
Landslide
24.6K papers, 472.1K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022179
2021209
2020174
2019182
2018190