scispace - formally typeset
Search or ask a question
Topic

Soil structure interaction

About: Soil structure interaction is a research topic. Over the lifetime, 3653 publications have been published within this topic receiving 48890 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a tri-dimensional finite-element analysis of a rigid-pile reinforced soil-improvement technique is presented, which aims to increase the bearing capacity of the soil and decrease the settlement of the surface structure.
Abstract: The rigid-pile soil-improvement technique aims to increase the bearing capacity of the soil and decrease the settlement of the surface structure. The most remarkable difference of this technique from the deep-foundation system is the soil layer between the pile heads and the structure. This soil layer, called the mattress, is made of compacted granular materials and participates in the load transfer through arching and shear mechanisms. In order to understand the dynamic behavior of rigid-pile reinforced soils, tri-dimensional finite-element analyses of a soil-pile-slab system, a soil-pile-mattress-slab system, and a soil-pile-mattress-embankment system are presented in this paper. Different geometric configurations are studied in terms of dynamic impedances. The soil, piles, mattress, and embankment are represented as continuum solids, and the slab is represented by structural plate-type elements. The horizontal and vertical impedances of pile foundations are presented and the results are compared with studies in the literature. This study shows the influence of the mattress stiffness, the geometrical configuration, and head/tip fixity conditions on the dynamic response of the foundation system. A comparison between rigid piles and pile foundations is then presented.

20 citations

Journal ArticleDOI
TL;DR: In this article, the performance of viscous damping formulations in the inelastic seismic response of moment-frame buildings was investigated, as quantified by amounts of plastic hinge rotations and story drifts.
Abstract: This report investigates the performance of several viscous damping formulations in the inelastic seismic response of moment-frame buildings. The evaluation employs a detailed model of a 20-story steel building. Damping schemes included in the study are Rayleigh, condensed Rayleigh, Wilson-Penzien, two versions of tangent Rayleigh and one implementation of capped damping. Caughey damping is found not to be computationally viable. Differences among the damping schemes, as quantified by amounts of plastic hinge rotations and story drifts, become noticeable once these quantities reach the 3% level. In order of least to greatest hinge rotations and drifts that occur under lateral response to horizontal ground motion, the damping schemes rank as Rayleigh (most damping action), condensed Rayleigh, Wilson-Penzien, the standard form of tangent Rayleigh and capped damping, which are about the same, and the elastic velocity version of tangent Rayleigh (least damping action). Performance of Rayleigh damping under vertical ground motion is discussed, including the effect of soil-structure interaction. The propensity of Rayleigh damping to generate excessive damping forces and moments during inelastic seismic analysis is explained, and a parameter is introduced that can predict the potential magnitude of the effect. A review of some literature on the role of viscous damping on the inelastic seismic response of moment frames is also presented.

20 citations

Journal ArticleDOI
TL;DR: In this paper, a finite-element based numerical analysis methodology has been developed for the nonlinear analysis of building-soil systems, which utilizes a reduced-order, nonlinear continuum model to represent the building, and the soil is represented with a simple nonlinear two-dimensional plane strain finite element.
Abstract: A finite-element based, numerical analysis methodology has been developed for the nonlinear analysis of building-soil systems. The methodology utilizes a reduced-order, nonlinear continuum model to represent the building, and the soil is represented with a simple nonlinear two-dimensional plane strain finite element. The foundation of the building is idealized as a rigid block and the interface between the soil and the foundation is modeled with an interface contract element. The objectives of the current paper are to provide the theoretical development of the system model, with particular emphasis on the modeling of the foundation-soil contact, and to demonstrate the special-purpose finite-element program that has been developed for nonlinear analysis of the building-soil system. Examples are included that compare the results obtained with the special-purpose program with the results of a general-purpose nonlinear finite-element program.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of soil-structure interaction on the optimum design of steel space frames is investigated using metaheuristic algorithms using three-parameter elastic foundation model.
Abstract: The effect of soil-structure interaction on the optimum design of steel space frames is investigated using metaheuristic algorithms. Three-parameter elastic foundation model is used to incorporate soil-structure interaction. A computer program is developed in MATLAB interacting with SAP2000-OAPI for two way data flow in all optimization procedures. Optimum design of space frames is formulated according to LRFD-AISC (Load and Resistance Factor Design, American Institute of Steel Construction) specifications. The parameters of foundation model are obtained by using soil surface displacements. It is concluded that consideration of soil-structure interaction ends up with heavier frames, and method is applicable for practical purposes.

19 citations

Journal ArticleDOI
TL;DR: In this article, the effects of earthquakes on cantilever retaining walls with liquefiable backfills were studied, including acceleration on the walls and in the backfill, static and excess pore pressures in the soil, and deflections and bending strains in the wall.

19 citations


Network Information
Related Topics (5)
Buckling
30.3K papers, 465.8K citations
80% related
Constitutive equation
24.9K papers, 665.1K citations
78% related
Compressive strength
64.4K papers, 1M citations
77% related
Stiffness
26.2K papers, 424.4K citations
76% related
Landslide
24.6K papers, 472.1K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022179
2021209
2020174
2019182
2018190